The Slice Spectral Sequence of a Height 4 Theory

XiaoLin Danny Shi

(Joint with Mike Hill, Guozhen Wang, and Zhouli Xu)

Harvard

June 8, 2018

• C_2 : cyclic group of order 2 with generator τ

- C_2 : cyclic group of order 2 with generator τ
- Real space X: X with a C_2 -action

- C_2 : cyclic group of order 2 with generator τ
- Real space X: X with a C_2 -action

- C_2 : cyclic group of order 2 with generator τ
- ▶ Real space X: X with a C₂-action

▶ Real vector bundle *E* over *X*:

- C_2 : cyclic group of order 2 with generator τ
- ▶ Real space X: X with a C₂-action

- ▶ Real vector bundle *E* over *X*:
 - E: complex vector bundle over X

- C_2 : cyclic group of order 2 with generator τ
- ▶ Real space X: X with a C₂-action

- ▶ Real vector bundle *E* over *X*:
 - E: complex vector bundle over X
 - ► E: Real space
 - $p: E \to X$ is C_2 -equivariant

- C_2 : cyclic group of order 2 with generator τ
- ▶ Real space X: X with a C₂-action

▶ Real vector bundle *E* over *X*:

- E: complex vector bundle over X
- ► E: Real space

•
$$p: E \rightarrow X$$
 is C_2 -equivariant

• $\tau: E_x \to E_{\tau(x)}$ is anti \mathbb{C} -linear

$$\tau(\mathbf{z}\cdot\mathbf{v})=\overline{\mathbf{z}}\cdot\tau(\mathbf{v})$$

- C_2 : cyclic group of order 2 with generator τ
- ▶ Real space X: X with a C₂-action

Real vector bundle E over X:

- E: complex vector bundle over X
- ► E: Real space

•
$$p: E \rightarrow X$$
 is C_2 -equivariant

• $\tau: E_x \to E_{\tau(x)}$ is anti \mathbb{C} -linear

$$\tau(\mathbf{z}\cdot\mathbf{v})=\overline{\mathbf{z}}\cdot\tau(\mathbf{v})$$

(This is NOT a C_2 -equivariant complex vector bundle!)

- C_2 : cyclic group of order 2 with generator τ
- ▶ Real space X: X with a C₂-action

▶ Real vector bundle *E* over *X*:

- E: complex vector bundle over X
- ► E: Real space

•
$$p: E \rightarrow X$$
 is C_2 -equivariant

• $\tau: E_x \to E_{\tau(x)}$ is anti \mathbb{C} -linear

$$\tau(\mathbf{z}\cdot\mathbf{v})=\overline{\mathbf{z}}\cdot\tau(\mathbf{v})$$

(This is NOT a C_2 -equivariant complex vector bundle!)

• $K_{\mathbb{R}}(X)$: Grothendieck's construction

• γ_n : the universal bundle over BU(n)

- γ_n : the universal bundle over BU(n)
- $BU(n)^{\gamma_n}$: its Thom space

- γ_n : the universal bundle over BU(n)
- $BU(n)^{\gamma_n}$: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

- γ_n : the universal bundle over BU(n)
- ► BU(n)^{γn}: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$
 - \implies Thom spectrum MU

- γ_n : the universal bundle over BU(n)
- ► BU(n)^{γn}: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum MU

BU(n): Real space
 γ_n: Real vector bundle

- γ_n : the universal bundle over BU(n)
- ► BU(n)^{γn}: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum MU

- BU(n): Real space
 γ_n: Real vector bundle
- ► $\Sigma^{\rho} BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$ ρ : regular representation of C_2

- γ_n : the universal bundle over BU(n)
- ► BU(n)^{γn}: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum MU

- BU(n): Real space
 γ_n: Real vector bundle
- ► $\Sigma^{\rho} BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$ ρ : regular representation of C_2

 \implies C₂-equivariant Thom spectrum $MU_{\mathbb{R}}$

• $K_{\mathbb{R}}$ and $MU_{\mathbb{R}}$ are both C_2 -equivariant spectra

- $K_{\mathbb{R}}$ and $MU_{\mathbb{R}}$ are both C_2 -equivariant spectra
- ► Their underlying spectra are KU and MU

- $K_{\mathbb{R}}$ and $MU_{\mathbb{R}}$ are both C_2 -equivariant spectra
- Their underlying spectra are KU and MU
- ► *K*_ℝ^{*C*₂}: KO

- $K_{\mathbb{R}}$ and $MU_{\mathbb{R}}$ are both C_2 -equivariant spectra
- Their underlying spectra are KU and MU
- ► K_R^{C₂}: KO MU_R^{C₂}: harder to describe (computed by Hu–Kriz)

- $K_{\mathbb{R}}$ and $MU_{\mathbb{R}}$ are both C_2 -equivariant spectra
- Their underlying spectra are KU and MU
- K_ℝ^{C₂}: KO MU_ℝ^{C₂}: harder to describe (computed by Hu−Kriz)
- ► $\pi^u_* MU_{\mathbb{R}}$ carries the universal C_2 -equivariant formal group law: the C_2 -action corresponds to the [-1]-series

- $K_{\mathbb{R}}$ and $MU_{\mathbb{R}}$ are both C_2 -equivariant spectra
- Their underlying spectra are KU and MU
- ► K_R^{C₂}: KO MU_R^{C₂}: harder to describe (computed by Hu–Kriz)
- ► $\pi^u_* MU_{\mathbb{R}}$ carries the universal C_2 -equivariant formal group law: the C_2 -action corresponds to the [-1]-series
- ► Localize at the prime 2, MU_R splits as a wedge of suspensions BP_R

X: C₄-spectrum.

$$\pi_n^{C_4}(X) = [S^n, X]^{C_4} = [C_4/C_{4+} \wedge S^n, X]^{C_4}$$

$$\pi_n^{C_4}(X) = [S^n, X]^{C_4} = [C_4/C_{4+} \wedge S^n, X]^{C_4}$$
$$\pi_n^{C_2}(X) = [S^n, X]^{C_2} = [C_4/C_{2+} \wedge S^n, X]^{C_4}$$

$$\pi_n^{C_4}(X) = [S^n, X]^{C_4} = [C_4/C_{4+} \land S^n, X]^{C_4}$$
$$\pi_n^{C_2}(X) = [S^n, X]^{C_2} = [C_4/C_{2+} \land S^n, X]^{C_4}$$
$$\pi_n^u(X) = [S^n, X] = [C_4/e_+ \land S^n, X]^{C_4}$$

$$\pi_{n}^{C_{4}}(X) = [S^{n}, X]^{C_{4}} = [C_{4}/C_{4+} \wedge S^{n}, X]^{C_{4}}$$
$$tr \left(\begin{array}{c} \downarrow \\ \downarrow res \end{array} \right)$$
$$\pi_{n}^{C_{2}}(X) = [S^{n}, X]^{C_{2}} = [C_{4}/C_{2+} \wedge S^{n}, X]^{C_{4}}$$
$$tr \left(\begin{array}{c} \downarrow \\ \downarrow res \end{array} \right)$$
$$\pi_{n}^{u}(X) = [S^{n}, X] = [C_{4}/e_{+} \wedge S^{n}, X]^{C_{4}}$$

X: C₄-spectrum.

$$\pi_{n}^{C_{4}}(X) = [S^{n}, X]^{C_{4}} = [C_{4}/C_{4+} \wedge S^{n}, X]^{C_{4}}$$
$$tr \left(\begin{array}{c} \downarrow \\ \downarrow res \end{array} \right)$$
$$\pi_{n}^{C_{2}}(X) = [S^{n}, X]^{C_{2}} = [C_{4}/C_{2+} \wedge S^{n}, X]^{C_{4}}$$
$$tr \left(\begin{array}{c} \downarrow \\ \downarrow res \end{array} \right)$$
$$\pi_{n}^{u}(X) = [S^{n}, X] = [C_{4}/e_{+} \wedge S^{n}, X]^{C_{4}}$$

► Mackey functors! <u>m</u>X

X: C₄-spectrum.

- ► Mackey functors! <u>m</u>X
- ► tr(res(a)) = 2a

X: C₄-spectrum.

- ► Mackey functors! <u>m</u>X
- ▶ tr(res(a)) = 2a
- Mackey functors form an Abelian category!

• Non-equivariantly,
$$\pi_n X = [S^n, X]$$

- Non-equivariantly, $\pi_n X = [S^n, X]$
- Equivariantly, we have more spheres

- Non-equivariantly, $\pi_n X = [S^n, X]$
- Equivariantly, we have more spheres
- V: G-representation $\implies S^V$
Extra Features

- Non-equivariantly, $\pi_n X = [S^n, X]$
- Equivariantly, we have more spheres
- V: G-representation $\implies S^V$
- ► X: G-spectrum

$$\pi_V^G X = [S^V, X]^G$$

Extra Features

- Non-equivariantly, $\pi_n X = [S^n, X]$
- Equivariantly, we have more spheres
- V: G-representation $\implies S^V$
- ► X: G-spectrum

$$\pi_V^G X = [S^V, X]^G$$

• $\pi_{\bigstar}^G X$: RO(G)-graded homotopy groups of X

Extra Features

- Non-equivariantly, $\pi_n X = [S^n, X]$
- Equivariantly, we have more spheres
- V: G-representation $\implies S^V$
- ► X: G-spectrum

$$\pi_V^G X = [S^V, X]^G$$

- $\pi_{\bigstar}^G X$: RO(G)-graded homotopy groups of X
- Both at the same time: $\underline{\pi}_{\bigstar}(X)$

Classically:

$$BP \longrightarrow \cdots \longrightarrow BP\langle 2 \rangle \longrightarrow BP\langle 1 \rangle \longrightarrow BP\langle 0 \rangle$$

Classically:

$$BP \longrightarrow \cdots \longrightarrow BP\langle 2 \rangle \longrightarrow BP\langle 1 \rangle \longrightarrow BP\langle 0 \rangle$$

$$= \pi_* BP\langle n \rangle = \mathbb{Z}_{(2)}[v_1, \ldots, v_n]$$

Classically:

$$BP \longrightarrow \cdots \longrightarrow BP\langle 2 \rangle \longrightarrow BP\langle 1 \rangle \longrightarrow BP\langle 0 \rangle$$

$$\pi_* BP\langle n \rangle = \mathbb{Z}_{(2)}[v_1, \dots, v_n]$$

$$BP\langle 0 \rangle = H\mathbb{Z}$$

Classically:

$$BP \longrightarrow \cdots \longrightarrow BP\langle 2 \rangle \longrightarrow BP\langle 1 \rangle \longrightarrow BP\langle 0 \rangle$$

$$= \pi_* BP\langle n \rangle = \mathbb{Z}_{(2)}[v_1, \ldots, v_n]$$

$$\blacktriangleright BP\langle 0 \rangle = H\mathbb{Z}$$

• $BP\langle 1 \rangle = ku$ connective K-theory

Classically:

$$BP \longrightarrow \cdots \longrightarrow BP\langle 2 \rangle \longrightarrow BP\langle 1 \rangle \longrightarrow BP\langle 0 \rangle$$

$$= \pi_* BP\langle n \rangle = \mathbb{Z}_{(2)}[v_1, \ldots, v_n]$$

$$\blacktriangleright BP\langle 0\rangle = H\mathbb{Z}$$

•
$$BP\langle 1 \rangle = ku$$
 connective K-theory

• $v_n^{-1}BP\langle n \rangle = E(n)$ Johnson–Wilson theory

 C_2 -equivariantly:

 $BP_{\mathbb{R}} \longrightarrow \cdots \longrightarrow BP_{\mathbb{R}}\langle 2 \rangle \longrightarrow BP_{\mathbb{R}}\langle 1 \rangle \longrightarrow BP_{\mathbb{R}}\langle 0 \rangle$

$$BP_{\mathbb{R}} \longrightarrow \cdots \longrightarrow BP_{\mathbb{R}}\langle 2 \rangle \longrightarrow BP_{\mathbb{R}}\langle 1 \rangle \longrightarrow BP_{\mathbb{R}}\langle 0 \rangle$$

$$BP_{\mathbb{R}} \longrightarrow \cdots \longrightarrow BP_{\mathbb{R}}\langle 2 \rangle \longrightarrow BP_{\mathbb{R}}\langle 1 \rangle \longrightarrow BP_{\mathbb{R}}\langle 0 \rangle$$

•
$$\pi^{u}_{*}BP_{\mathbb{R}}\langle n \rangle = \mathbb{Z}_{(2)}[v_{1}, \ldots, v_{n}]$$

$$BP_{\mathbb{R}} \longrightarrow \cdots \longrightarrow BP_{\mathbb{R}}\langle 2 \rangle \longrightarrow BP_{\mathbb{R}}\langle 1 \rangle \longrightarrow BP_{\mathbb{R}}\langle 0 \rangle$$

•
$$BP_{\mathbb{R}}\langle 1 \rangle = k_{\mathbb{R}}$$

$$BP_{\mathbb{R}} \longrightarrow \cdots \longrightarrow BP_{\mathbb{R}}\langle 2 \rangle \longrightarrow BP_{\mathbb{R}}\langle 1 \rangle \longrightarrow BP_{\mathbb{R}}\langle 0 \rangle$$

•
$$\pi^{u}_{*}BP_{\mathbb{R}}\langle n \rangle = \mathbb{Z}_{(2)}[v_{1}, \ldots, v_{n}]$$

$$\blacktriangleright \ BP_{\mathbb{R}} \langle 1 \rangle = k_{\mathbb{R}}$$

•
$$v_n \in \pi_{2(2^n-1)}BP$$
 lifts to $\bar{v}_n \in \pi^{C_2}_{(2^n-1)
ho}BP_{\mathbb{R}}$

$$BP_{\mathbb{R}} \longrightarrow \cdots \longrightarrow BP_{\mathbb{R}}\langle 2 \rangle \longrightarrow BP_{\mathbb{R}}\langle 1 \rangle \longrightarrow BP_{\mathbb{R}}\langle 0 \rangle$$

$$\blacktriangleright BP_{\mathbb{R}}\langle 1\rangle = k_{\mathbb{R}}$$

- $v_n \in \pi_{2(2^n-1)}BP$ lifts to $\bar{v}_n \in \pi_{(2^n-1)\rho}^{C_2}BP_{\mathbb{R}}$
- ▶ $\bar{v}_n^{-1}BP_{\mathbb{R}}\langle n \rangle = E_{\mathbb{R}}(n)$ Real Johnson–Wilson theory

•
$$N_{C_2}^{C_{2m}}: C_2$$
-Spectra $\longrightarrow C_{2^m}$ -Spectra

►
$$N_{C_2}^{C_{2m}}$$
 : C_2 -Spectra $\longrightarrow C_{2m}$ -Spectra
► $MU^{((C_{2m}))}$:= $N_{C_2}^{C_{2m}}(MU_{\mathbb{R}})$

$$\blacktriangleright \ \mathcal{N}_{C_2}^{C_{2^m}}: \ C_2\text{-}\mathsf{Spectra} \longrightarrow C_{2^m}\text{-}\mathsf{Spectra}$$

• $MU^{((C_{2^m}))} := N_{C_2}^{C_{2^m}}(MU_{\mathbb{R}})$

underlying spectrum of $MU^{((C_8))}$: $MU \land MU \land MU \land MU$

$$\blacktriangleright N_{C_2}^{C_{2m}}: C_2\text{-}\mathsf{Spectra} \longrightarrow C_{2^m}\text{-}\mathsf{Spectra}$$

► $MU^{((C_{2^m}))} := N_{C_2}^{C_{2^m}}(MU_{\mathbb{R}})$ underlying spectrum of $MU^{((C_8))}$: $MU \land MU \land MU \land MU$ $(a, b, c, d) \longrightarrow (\overline{d}, a, b, c)$

$$\blacktriangleright \ \mathcal{N}_{C_2}^{C_{2^m}}: C_2\text{-}\mathsf{Spectra} \longrightarrow C_{2^m}\text{-}\mathsf{Spectra}$$

• $MU^{((C_{2^m}))} := N_{C_2}^{C_{2^m}}(MU_{\mathbb{R}})$

underlying spectrum of $MU^{((C_8))}$: $MU \land MU \land MU \land MU$ $(a, b, c, d) \longrightarrow (\overline{d}, a, b, c)$

 π^u_{*}MU^{((C₂m))} carries the universal C₂m-equivariant formal group law such that the C₂-action corresponds to the [−1]-series

$$\blacktriangleright \ \mathcal{N}_{C_2}^{C_{2^m}}: C_2\text{-}\mathsf{Spectra} \longrightarrow C_{2^m}\text{-}\mathsf{Spectra}$$

• $MU^{((C_{2^m}))} := N_{C_2}^{C_{2^m}}(MU_{\mathbb{R}})$

underlying spectrum of $MU^{((C_8))}$: $MU \land MU \land MU \land MU$ $(a, b, c, d) \longrightarrow (\overline{d}, a, b, c)$

 π^u_{*}MU^{((C₂m))} carries the universal C₂m-equivariant formal group law such that the C₂-action corresponds to the [−1]-series

►
$$BP^{((C_{2^m}))} := N_{C_2}^{C_{2^m}}(BP_{\mathbb{R}})$$

 $MU^{((C_{2^m}))}$ splits as a wedge of suspensions of $BP^{((C_{2^m}))}$

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

• Start with $MU^{((C_8))}$

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

- Start with $MU^{((C_8))}$
- ▶ Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

- Start with $MU^{((C_8))}$
- ▶ Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$
- Ω : its C_8 -fixed point spectrum

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

- Start with $MU^{((C_8))}$
- ▶ Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$
- Ω : its C_8 -fixed point spectrum
- Detection Theorem:

If θ_j exists, then its image in $\pi_{2^{j+1}-2}\Omega$ is nonzero.

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

- Start with $MU^{((C_8))}$
- ▶ Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$
- Ω : its C_8 -fixed point spectrum
- Detection Theorem: If θ_j exists, then its image in $\pi_{2j+1} = \Omega$ is nonzero.
- Periodicity Theorem:
 π_{*}Ω is 256-periodic.

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

- Start with $MU^{((C_8))}$
- ▶ Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$
- Ω : its C_8 -fixed point spectrum
- Detection Theorem: If θ_j exists, then its image in $\pi_{2^{j+1}-2}\Omega$ is nonzero.
- Periodicity Theorem:
 π_{*}Ω is 256-periodic.
- Gap Theorem:
 π_iΩ = 0 for i = -1, -2, -3.

Baby Ω

$BP^{((C_{2^m}))} \to \cdots \to BP^{((C_{2^m}))}\langle 2 \rangle \to BP^{((C_{2^m}))}\langle 1 \rangle \to BP^{((C_{2^m}))}\langle 0 \rangle$

$$BP^{((C_{2^m}))} \to \cdots \to BP^{((C_{2^m}))}\langle 2 \rangle \to BP^{((C_{2^m}))}\langle 1 \rangle \to BP^{((C_{2^m}))}\langle 0 \rangle$$

•
$$\pi^{u}_{*}BP^{((C_{2^{m}}))}\langle n \rangle = \mathbb{Z}_{(2)}[C_{2^{m}} \cdot r_{1}, C_{2^{m}} \cdot r_{3}, \dots, C_{2^{m}} \cdot r_{2^{n}-1}]$$

$$BP^{((C_{2^m}))} o \cdots o BP^{((C_{2^m}))}\langle 2 \rangle o BP^{((C_{2^m}))}\langle 1 \rangle o BP^{((C_{2^m}))}\langle 0 \rangle$$

►
$$\pi_*^u BP^{((C_{2^m}))}\langle n \rangle = \mathbb{Z}_{(2)}[C_{2^m} \cdot r_1, C_{2^m} \cdot r_3, \dots, C_{2^m} \cdot r_{2^n-1}]$$

 γ : generator of C_{2^m}
 $C_{2^m} \cdot r_i := \{r_i, \gamma r_i, \dots, \gamma^{2^{m-1}-1}r_i\}$

$$BP^{((C_{2^m}))} o \cdots o BP^{((C_{2^m}))}\langle 2 \rangle o BP^{((C_{2^m}))}\langle 1 \rangle o BP^{((C_{2^m}))}\langle 0 \rangle$$

$$BP^{((C_{2^m}))} o \cdots o BP^{((C_{2^m}))}\langle 2
angle o BP^{((C_{2^m}))}\langle 1
angle o BP^{((C_{2^m}))}\langle 0
angle$$

(Hill-Hopkins-Ravenel reduction theorem)

•
$$(BP^{((C_8))}\langle 1\rangle)^{C_8}$$
 also detects $\theta_j!$

Slice Cells and the Slice Tower

▶ G: finite group. $H \subset G$. ρ_H : regular representation of H

Slice Cells and the Slice Tower

- ▶ G: finite group. $H \subset$ G. ρ_H : regular representation of H
- Slice cells: $G_+ \wedge_H S^{n\rho_H}$ and $G_+ \wedge_H S^{n\rho_H-1}$

Slice Cells and the Slice Tower

- ▶ G: finite group. $H \subset$ G. ρ_H : regular representation of H
- ► Slice cells: $G_+ \wedge_H S^{n\rho_H}$ and $G_+ \wedge_H S^{n\rho_H-1}$ Dimension = underlying dimension
- ▶ G: finite group. $H \subset G$. ρ_H : regular representation of H
- ► Slice cells: $G_+ \wedge_H S^{n\rho_H}$ and $G_+ \wedge_H S^{n\rho_H-1}$ Dimension = underlying dimension
- ▶ $S_{>n}$: smallest full subcategory of *G*-spectra that
 - contains slice cells of dimension > n

- ▶ G: finite group. $H \subset G$. ρ_H : regular representation of H
- ► Slice cells: $G_+ \wedge_H S^{n\rho_H}$ and $G_+ \wedge_H S^{n\rho_H-1}$ Dimension = underlying dimension
- ▶ $S_{>n}$: smallest full subcategory of *G*-spectra that
 - contains slice cells of dimension > n
 - closed under taking cofibers, extensions and wedges

- ▶ G: finite group. $H \subset G$. ρ_H : regular representation of H
- ► Slice cells: $G_+ \wedge_H S^{n\rho_H}$ and $G_+ \wedge_H S^{n\rho_H-1}$ Dimension = underlying dimension
- ▶ $S_{>n}$: smallest full subcategory of *G*-spectra that
 - contains slice cells of dimension > n
 - closed under taking cofibers, extensions and wedges

•
$$\mathcal{S}_{\leq n} = \{X \mid Map_G(Y, X) \simeq *, Y \in \mathcal{S}_{>n}\}$$

- ▶ G: finite group. $H \subset G$. ρ_H : regular representation of H
- ► Slice cells: $G_+ \wedge_H S^{n\rho_H}$ and $G_+ \wedge_H S^{n\rho_H-1}$ Dimension = underlying dimension
- ▶ $S_{>n}$: smallest full subcategory of *G*-spectra that
 - contains slice cells of dimension > n
 - closed under taking cofibers, extensions and wedges

Slice tower:

Slice tower:

Apply $\pi^{G}_{*}(-)$:

Slice tower:

Apply $\pi^{G}_{*}(-)$:

$$E_1^{s,t} = \pi_{t-s}^G P_t^t X \Longrightarrow \pi_{t-s}^G X$$
$$d_r : E_r^{s,t} \longrightarrow E_r^{s+r,t+r-1}$$

Slice tower:

Slice tower:

Apply $\pi^{G}_{\bigstar}(-)$:

Slice tower:

Apply $\pi^{G}_{\bigstar}(-)$:

Slice tower:

Slice tower:

Apply $\underline{\pi}_*(-)$:

Slice tower:

Apply $\underline{\pi}_*(-)$:

 $\underline{\underline{E}}_{1}^{s,t} = \underline{\pi}_{t-s} P_{t}^{t} X \Longrightarrow \underline{\pi}_{t-s} X$ $d_{r} : \underline{\underline{E}}_{r}^{s,t} \longrightarrow \underline{\underline{E}}_{r}^{s+r,t+r-1}$

This is a spectral sequence of Mackey functors.

This is a spectral sequence of Mackey functors.

It is also a Mackey functor of spectral sequences!

Slice tower:

Slice tower:

Slice tower:

Apply $\underline{\pi}_{\bigstar}(-)$:

Slice tower:

Apply $\underline{\pi}_{\bigstar}(-)$:

C_2 -SliceSS($K_{\mathbb{R}}$): $\underline{\pi}_*K_{\mathbb{R}}$

• Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$

• Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$

•
$$P_{2n-1}^{2n-1}K_{\mathbb{R}}=0$$
 for all $n\in\mathbb{Z}$

• Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$

•
$$P_{2n-1}^{2n-1}K_{\mathbb{R}}=0$$
 for all $n\in\mathbb{Z}$

•
$$P_{2n}^{2n}K_{\mathbb{R}} = S^{n\rho} \wedge H\underline{\mathbb{Z}}$$
 for all $n \in \mathbb{Z}$

- Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$
- $P_{2n-1}^{2n-1}K_{\mathbb{R}} = 0$ for all $n \in \mathbb{Z}$
- $P_{2n}^{2n}K_{\mathbb{R}} = S^{n\rho} \wedge H\underline{\mathbb{Z}}$ for all $n \in \mathbb{Z}$
- E₁-page:

$$\pi^{C_2}_{\bigstar}(S^{n
ho}\wedge H\underline{\mathbb{Z}})$$

- Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$
- $P_{2n-1}^{2n-1}K_{\mathbb{R}} = 0$ for all $n \in \mathbb{Z}$
- $P_{2n}^{2n}K_{\mathbb{R}} = S^{n\rho} \wedge H\underline{\mathbb{Z}}$ for all $n \in \mathbb{Z}$
- E₁-page:

$$\pi_{\bigstar}^{C_2}(S^{n\rho} \wedge H\underline{\mathbb{Z}}) = H_{\bigstar}^{C_2}(S^{n\rho};\underline{\mathbb{Z}})$$

- Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$
- ▶ $P_{2n-1}^{2n-1}K_{\mathbb{R}} = 0$ for all $n \in \mathbb{Z}$
- $P_{2n}^{2n}K_{\mathbb{R}} = S^{n\rho} \wedge H\underline{\mathbb{Z}}$ for all $n \in \mathbb{Z}$
- E₁-page:

$$\pi_{\bigstar}^{C_2}(S^{n\rho} \wedge H\underline{\mathbb{Z}}) = H_{\bigstar}^{C_2}(S^{n\rho};\underline{\mathbb{Z}}) = \pi_{\bigstar-n\rho}^{C_2}H\underline{\mathbb{Z}}$$

- Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$
- $P_{2n-1}^{2n-1}K_{\mathbb{R}} = 0$ for all $n \in \mathbb{Z}$
- $P_{2n}^{2n}K_{\mathbb{R}} = S^{n\rho} \wedge H\underline{\mathbb{Z}}$ for all $n \in \mathbb{Z}$
- E₁-page:

$$\pi_{\bigstar}^{C_2}(S^{n\rho} \wedge H\underline{\mathbb{Z}})$$
$$= H_{\bigstar}^{C_2}(S^{n\rho};\underline{\mathbb{Z}})$$
$$= \pi_{\bigstar-n\rho}^{C_2}H\underline{\mathbb{Z}}$$

Note that RO(C₂) = ℤ ⊕ ℤ generated by 1 and σ

- Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$
- $P_{2n-1}^{2n-1}K_{\mathbb{R}}=0$ for all $n\in\mathbb{Z}$
- $P_{2n}^{2n}K_{\mathbb{R}} = S^{n\rho} \wedge H\underline{\mathbb{Z}}$ for all $n \in \mathbb{Z}$
- E₁-page:

$$\pi_{\bigstar}^{C_2}(S^{n\rho} \wedge H\underline{\mathbb{Z}})$$
$$= H_{\bigstar}^{C_2}(S^{n\rho};\underline{\mathbb{Z}})$$
$$= \pi_{\bigstar-n\rho}^{C_2}H\underline{\mathbb{Z}}$$

Note that RO(C₂) = ℤ ⊕ ℤ generated by 1 and σ

•
$$a_{\sigma}: S^0 \longrightarrow S^{\sigma}$$

- Dugger computed the C_2 -slice spectral sequence of $K_{\mathbb{R}}$
- $P_{2n-1}^{2n-1}K_{\mathbb{R}}=0$ for all $n\in\mathbb{Z}$
- $P_{2n}^{2n}K_{\mathbb{R}} = S^{n\rho} \wedge H\underline{\mathbb{Z}}$ for all $n \in \mathbb{Z}$
- E₁-page:

$$\begin{aligned} \pi^{C_2}_{\bigstar}(S^{n\rho} \wedge H\underline{\mathbb{Z}}) \\ &= H^{C_2}_{\bigstar}(S^{n\rho};\underline{\mathbb{Z}}) \\ &= \pi^{C_2}_{\bigstar - n\rho} H\underline{\mathbb{Z}} \end{aligned}$$

- Note that RO(C₂) = ℤ ⊕ ℤ generated by 1 and σ
- $a_{\sigma}: S^0 \longrightarrow S^{\sigma}$
- $u_{2\sigma}$: generator of $H_2^{C_2}(S^{2\sigma};\underline{\mathbb{Z}}) = \mathbb{Z}$

 $\pi^{C_2}_{a+b\sigma}H\underline{\mathbb{Z}}$

C_2 -SliceSS($K_{\mathbb{R}}$): $\underline{\pi}_*K_{\mathbb{R}}$

 C_2 -SliceSS($K_{\mathbb{R}}$): $\pi^u_*K_{\mathbb{R}} = \pi_*KU$

C_2 -SliceSS($K_{\mathbb{R}}$): $\pi^{C_2}_*K_{\mathbb{R}} = \pi_*KO$

C_2 -SliceSS($K_{\mathbb{R}}$): $\pi^{C_2}_*K_{\mathbb{R}} = \pi_*KO$

In the $RO(C_2)$ -grading:

• $\bar{v}_1 \in \pi_{\rho}^{C_2} K_{\mathbb{R}}$ gives ρ -periodicity

In the $RO(C_2)$ -grading:

• $ar{v}_1 \in \pi_{
ho}^{C_2} K_{\mathbb{R}}$ gives ho-periodicity

►
$$u_{2\sigma}^2 \in \pi_{4-4\sigma}^{C_2} K_{\mathbb{R}}$$
 gives $(4 - 4\sigma)$ -periodicity

In the $RO(C_2)$ -grading:

- $ar{v}_1 \in \pi_{
 ho}^{C_2} K_{\mathbb{R}}$ gives ho-periodicity
- ► $u_{2\sigma}^2 \in \pi_{4-4\sigma}^{C_2} K_{\mathbb{R}}$ gives $(4-4\sigma)$ -periodicity

$$\pi_{\bigstar+\rho}^{C_2}K_{\mathbb{R}} = \pi_{\bigstar}^{C_2}K_{\mathbb{R}}$$

In the $RO(C_2)$ -grading:

- $ar{v}_1 \in \pi_{
 ho}^{C_2} K_{\mathbb{R}}$ gives ho-periodicity
- ► $u_{2\sigma}^2 \in \pi_{4-4\sigma}^{C_2} K_{\mathbb{R}}$ gives $(4-4\sigma)$ -periodicity

$$\pi_{igstar{h}+
ho}^{\mathcal{C}_2} \mathcal{K}_{\mathbb{R}} = \pi_{igstar{h}}^{\mathcal{C}_2} \mathcal{K}_{\mathbb{R}}$$

$$\pi_{\bigstar+8}^{\mathsf{C}_2}\mathsf{K}_{\mathbb{R}} = \pi_{\bigstar}^{\mathsf{C}_2}\mathsf{K}_{\mathbb{R}}$$

In the $RO(C_2)$ -grading:

- $\bar{v}_1 \in \pi_{\rho}^{C_2} K_{\mathbb{R}}$ gives ρ -periodicity
- ► $u_{2\sigma}^2 \in \pi_{4-4\sigma}^{C_2} K_{\mathbb{R}}$ gives $(4-4\sigma)$ -periodicity

$$\pi_{\bigstar+\rho}^{C_2} K_{\mathbb{R}} = \pi_{\bigstar}^{C_2} K_{\mathbb{R}}$$

$$\pi_{\bigstar+8}^{C_2}K_{\mathbb{R}} = \pi_{\bigstar}^{C_2}K_{\mathbb{R}}$$

Two equivalences:

$$S^{
ho} \wedge K_{\mathbb{R}} \simeq K_{\mathbb{R}}$$

 $S^8 \wedge K_{\mathbb{R}} \simeq K_{\mathbb{R}}$

- ► Odd slices ≃ *
- - Computable!

- ► Odd slices ≃ *
- Even slices = $\bigvee_{H \subset G \text{ nontrivial}} (G_+ \wedge_H S^{m\rho_H}) \wedge H\underline{\mathbb{Z}}$

•
$$E_1$$
-page: $H^G_{\bigstar}(G_+ \wedge_H S^{m\rho_H}; \underline{\mathbb{Z}})$
Computable!

What about Detection Theorems, Periodicity Theorems, and Gap Theorems? Hurewicz Image of $BP_{\mathbb{R}}^{C_2}$

$BP_{\mathbb{R}} \longrightarrow \cdots \longrightarrow BP_{\mathbb{R}}\langle 3 \rangle \longrightarrow BP_{\mathbb{R}}\langle 2 \rangle \longrightarrow BP_{\mathbb{R}}\langle 1 \rangle$

Hurewicz Image of $BP_{\mathbb{R}}^{C_2}$

$BP_{\mathbb{R}}^{C_2} \longrightarrow \cdots \longrightarrow BP_{\mathbb{R}}\langle 3 \rangle^{C_2} \longrightarrow BP_{\mathbb{R}}\langle 2 \rangle^{C_2} \longrightarrow BP_{\mathbb{R}}\langle 1 \rangle^{C_2}$

Hurewicz Image of $BP_{\mathbb{R}}^{C_2}$

What are the Hurewicz images?

Theorem (Li–S.–Wang–Xu)

The Hopf, Kervaire, and $\bar{\kappa}$ -families are detected by the Hurewicz map $\pi_* \mathbb{S} \to \pi_* BP_{\mathbb{R}}^{C_2}$.

Theorem (Li–S.–Wang–Xu)

The Hopf, Kervaire, and $\bar{\kappa}$ -families are detected by the Hurewicz map $\pi_* \mathbb{S} \to \pi_* BP_{\mathbb{R}}^{C_2}$.

Theorem (Li–S.–Wang–Xu)

The C₂-fixed points of $BP_{\mathbb{R}}\langle n \rangle$ detects the first n elements of the Hopf- and Kervaire-family, and the first (n-1) elements of the $\bar{\kappa}$ -family.

►
$$h_i \in \operatorname{Ext}_{\mathcal{A}_*}^{1,2^i}(\mathbb{F}_2,\mathbb{F}_2)$$

 h_i ∈ Ext^{1,2i}_{A_{*}}(𝔽₂,𝔽₂): h_i survives and detects Hopf map for i ≤ 3 h_i supports nonzero differentials for i ≥ 4

h_i ∈ Ext^{1,2ⁱ}_{A_{*}} (𝔽₂, 𝔽₂): h_i survives and detects Hopf map for i ≤ 3 h_i supports nonzero differentials for i ≥ 4
h²_i ∈ Ext^{2,2^{j+1}}_A (𝔽₂, 𝔽₂):

h_i ∈ Ext^{1,2i}_{A*}(𝔽₂,𝔽₂): h_i survives and detects Hopf map for i ≤ 3 h_i supports nonzero differentials for i ≥ 4
h²_j ∈ Ext^{2,2i+1}_{A*}(𝔽₂,𝔽₂): h²_i survives and detects Kervaire class θ_j for j ≤ 5

h_i ∈ Ext^{1,2ⁱ}_{A_{*}} (𝔽₂, 𝔽₂): h_i survives and detects Hopf map for i ≤ 3 h_i supports nonzero differentials for i ≥ 4
h²_j ∈ Ext^{2,2^{j+1}}_{A_{*}} (𝔽₂, 𝔽₂): h²_j survives and detects Kervaire class θ_j for j ≤ 5 h²_j supports differential for j ≥ 7 the fate of h²₆ is unknown

h_i ∈ Ext^{1,2ⁱ}_{A_{*}} (𝔽₂, 𝔽₂): h_i survives and detects Hopf map for i ≤ 3 h_i supports nonzero differentials for i ≥ 4
h²_j ∈ Ext^{2,2^{j+1}}_{A_{*}} (𝔽₂, 𝔽₂): h²_j survives and detects Kervaire class θ_j for j ≤ 5 h²_j supports differential for j ≥ 7 the fate of h²₆ is unknown

•
$$g_k = \langle h_{k+2}^2, h_{k-1}, h_k, h_{k+1} \rangle \in \operatorname{Ext}_{\mathcal{A}_*}^{4,2^{k+2}+2^{k+3}}(\mathbb{F}_2, \mathbb{F}_2):$$

h_i ∈ Ext^{1,2ⁱ}_{A_{*}} (𝔽₂, 𝔽₂): h_i survives and detects Hopf map for i ≤ 3 h_i supports nonzero differentials for i ≥ 4
h²_j ∈ Ext^{2,2^{j+1}}_{A_{*}} (𝔽₂, 𝔽₂): h²_j survives and detects Kervaire class θ_j for j ≤ 5 h²_j supports differential for j ≥ 7 the fate of h²₆ is unknown

► $g_k = \langle h_{k+2}^2, h_{k-1}, h_k, h_{k+1} \rangle \in \operatorname{Ext}_{\mathcal{A}_*}^{4, 2^{k+2}+2^{k+3}}(\mathbb{F}_2, \mathbb{F}_2):$ g_1, g_2 survive and detect $\bar{\kappa}, \bar{\kappa}_2$ in stems 20, 44

h_i ∈ Ext^{1,2ⁱ}_{A_{*}} (𝔽₂, 𝔽₂): h_i survives and detects Hopf map for i ≤ 3 h_i supports nonzero differentials for i ≥ 4
h²_j ∈ Ext^{2,2^{j+1}}_{A_{*}} (𝔽₂, 𝔽₂): h²_j survives and detects Kervaire class θ_j for j ≤ 5 h²_j supports differential for j ≥ 7 the fate of h²₆ is unknown

► $g_k = \langle h_{k+2}^2, h_{k-1}, h_k, h_{k+1} \rangle \in \operatorname{Ext}_{\mathcal{A}_*}^{4,2^{k+2}+2^{k+3}}(\mathbb{F}_2, \mathbb{F}_2)$: g_1, g_2 survive and detect $\bar{\kappa}, \bar{\kappa}_2$ in stems 20, 44 g_3 supports a nonzero differential in stem 92

h_i ∈ Ext^{1,2ⁱ}_{A_{*}} (𝔽₂, 𝔽₂): h_i survives and detects Hopf map for i ≤ 3 h_i supports nonzero differentials for i ≥ 4
h²_j ∈ Ext^{2,2^{j+1}}_{A_{*}} (𝔽₂, 𝔽₂): h²_j survives and detects Kervaire class θ_j for j ≤ 5 h²_j supports differential for j ≥ 7 the fate of h²₆ is unknown
g_k = ⟨h²_{k+2}, h_{k-1}, h_k, h_{k+1}⟩ ∈ Ext^{4,2^{k+2}+2^{k+3}}_{A_{*}} (𝔽₂, 𝔽₂): π = a survive and detect m is in the survey of the factors and detect m is in the survey of the factors and detect m is in the survey of the factors and detect m is in the survey of the factors and detect m is in the survey of the factors and detect m is in the survey of the factors and detect m is in the survey of the factors are survey and detect m is in the survey of the factors are survey of th

 g_1, g_2 survive and detect $\bar{\kappa}, \bar{\kappa}_2$ in stems 20, 44 g_3 supports a nonzero differential in stem 92 the fate of g_k for $k \ge 4$ is unknown

central $C_2 \subset \mathbb{S}_n$: acts on E_{n*} by [-1].

central $C_2 \subset \mathbb{S}_n$: acts on E_{n*} by [-1].

Can we lift it?

Theorem (Hahn–S.)

The Morava E-theory is Real oriented: it receives a C_2 -equivariant map

$$MU_{\mathbb{R}} \longrightarrow E_n$$

from the Real bordism spectrum $MU_{\mathbb{R}}$.

Detection theorems for $BP_{\mathbb{R}}\langle n \rangle^{C_2}$ \implies Detection theorems for $E_n^{hC_2}$.

Theorem (Li–S.–Wang–Xu, Hahn–S.)

 $E_n^{hC_2}$ detects the first n elements of the Hopf- and Kervaire-family, and the first (n-1) elements of the $\bar{\kappa}$ -family.

Theorem (Li–S.–Wang–Xu, Hahn–S.)

 $E_n^{hC_2}$ detects the first n elements of the Hopf- and Kervaire-family, and the first (n-1) elements of the $\bar{\kappa}$ -family.

The Hurewicz images of $E_n^{hC_2}$ and $BP_{\mathbb{R}}\langle n \rangle^{C_2}$ are the same.

What about the periodicity and the gap?

What about the periodicity and the gap?

•
$$\pi_* E_n^{hC_2}$$
 is 2^{n+2} -periodic.

What about the periodicity and the gap?

•
$$\pi_* E_n^{hC_2}$$
 is 2^{n+2} -periodic.

•
$$\pi_i E_n^{hC_2} = 0$$
 for $i = -1, -2, -3$

What about bigger groups?

What about bigger groups?

Theorem (Hahn-Shi)

Let $G \subset S_n$ be a finite subgroup containing the central subgroup C_2 . There is a G-equivariant map

$$MU^{((G))} \longrightarrow E_n.$$

$$BP^{((C_{2^m}))} \longrightarrow BP^{((C_{2^m}))}\langle n \rangle$$

$$\downarrow$$

$$E_{n \cdot 2^{m-1}}$$

$$\bigcup_{C_{2^m}}$$

Techniques developed by Hill, Hopkins, and Ravenel show that

•
$$\pi_* E_{n \cdot 2^{m-1}}^{hC_{2^m}}$$
 is periodic with period $2^{n \cdot 2^{m-1} + m + 1}$.

$$BP^{((C_{2^m}))} \longrightarrow BP^{((C_{2^m}))}\langle n \rangle$$

$$\downarrow$$

$$E_{n \cdot 2^{m-1}}$$

$$\bigcup_{C_{2^m}}^{\mathcal{F}}$$

Techniques developed by Hill, Hopkins, and Ravenel show that

$SliceSS(BP^{((C_4))}\langle 1 \rangle)$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 1 \rangle)$

• $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ , and λ

RO(*C*₄) = ℤ ⊕ ℤ ⊕ ℤ, generated by 1, σ, and λ
 D⁻¹*BP*^{((*C*₄))}⟨1⟩ has three periodicities:

- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ , and λ
- $D^{-1}BP^{((C_4))}\langle 1 \rangle$ has three periodicities:
 - $S^{\rho_4} \wedge D^{-1} BP^{((C_4))}\langle 1 \rangle \simeq D^{-1} BP^{((C_4))}\langle 1 \rangle$

- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ , and λ
- $D^{-1}BP^{((C_4))}\langle 1 \rangle$ has three periodicities:
 - $S^{\rho_4} \wedge D^{-1}BP^{((C_4))}\langle 1 \rangle \simeq D^{-1}BP^{((C_4))}\langle 1 \rangle$
 - $S^{4-4\sigma} \wedge D^{-1}BP^{((\hat{C_4}))}\langle 1 \rangle \simeq D^{-1}BP^{((\hat{C_4}))}\langle 1 \rangle$

- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ , and λ
- $D^{-1}BP^{((C_4))}\langle 1 \rangle$ has three periodicities:
 - $S^{\rho_4} \wedge D^{-1}BP^{((C_4))}\langle 1 \rangle \simeq D^{-1}BP^{((C_4))}\langle 1 \rangle$
 - $S^{4-4\sigma} \wedge D^{-1}BP^{((C_4))}(1) \simeq D^{-1}BP^{((C_4))}(1)$
 - $S^{8+8\sigma-8\lambda} \wedge D^{-1}BP^{((\check{C}_4))}\langle 1 \rangle \simeq D^{-1}BP^{((\check{C}_4))}\langle 1 \rangle$

- $RO(C_4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by 1, σ , and λ
- $D^{-1}BP^{((C_4))}\langle 1 \rangle$ has three periodicities:
 - $S^{\rho_4} \wedge D^{-1}BP^{((C_4))}\langle 1 \rangle \simeq D^{-1}BP^{((C_4))}\langle 1 \rangle$
 - $S^{4-4\sigma} \wedge D^{-1}BP^{((C_4))}\langle 1 \rangle \simeq D^{-1}BP^{((C_4))}\langle 1 \rangle$
 - $S^{8+8\sigma-8\lambda} \wedge D^{-1}BP^{((\check{C}_4))}\langle 1 \rangle \simeq D^{-1}BP^{((\check{C}_4))}\langle 1 \rangle$

► Together, they imply the 32-periodicity!

$$8\rho_4 + 4(4 - 4\sigma) + (8 + 8\sigma - 8\lambda)$$

 $= 8(1 + \sigma + \lambda) + 4(4 - 4\sigma) + (8 + 8\sigma - 8\lambda)$
 $= 32$

$BP_{\mathbb{R}} \longrightarrow i_{C_2}^* BP^{((C_4))} \longrightarrow i_{C_2}^* BP^{((C_4))} \langle 1 \rangle$

$$BP_{\mathbb{R}} \longrightarrow i_{C_2}^* BP^{((C_4))} \longrightarrow i_{C_2}^* BP^{((C_4))} \langle 1 \rangle$$
$$\implies \eta, \eta^2, \nu, \nu^2, \bar{\kappa} \text{ are detected in } \pi_*^{C_2} BP^{((C_4))} \langle 1 \rangle$$

$$BP_{\mathbb{R}} \longrightarrow i_{C_2}^* BP^{((C_4))} \longrightarrow i_{C_2}^* BP^{((C_4))} \langle 1 \rangle$$

$$\implies \eta, \eta^2, \nu, \nu^2, \bar{\kappa} \text{ are detected in } \pi_*^{C_2} BP^{((C_4))} \langle 1 \rangle$$

$$\pi_*^{C_4} BP^{((C_4))} \langle 1 \rangle \xrightarrow{res} \pi_*^{C_2} BP^{((C_4))} \langle 1 \rangle$$

$$\uparrow$$

$$\pi_*^{S}$$

$$BP_{\mathbb{R}} \longrightarrow i_{C_2}^* BP^{((C_4))} \longrightarrow i_{C_2}^* BP^{((C_4))} \langle 1 \rangle$$

$$\implies \eta, \eta^2, \nu, \nu^2, \bar{\kappa} \text{ are detected in } \pi_*^{C_2} BP^{((C_4))} \langle 1 \rangle$$

$$\pi_*^{C_4} BP^{((C_4))} \langle 1 \rangle \xrightarrow{res} \pi_*^{C_2} BP^{((C_4))} \langle 1 \rangle$$

$$\uparrow$$

$$\pi_*^{S}$$

 \implies These elements are also detected in $\pi_*^{C_4} BP^{((C_4))} \langle 1 \rangle$

$SliceSS(BP^{((C_4))}\langle 1 \rangle)$

$SliceSS(BP_{\mathbb{R}}\langle 2 \rangle)$

Stabilization of Filtration

For ν :

$\pi_*^{C_{2^m}} BP^{((C_{2^m}))}$	<i>C</i> ₂	<i>C</i> ₄	<i>C</i> ₈	<i>C</i> ₁₆
Filtration	3	1	1	1
Order	2	4	4	4

Stabilization of Filtration

For ν :

$\pi_*^{C_{2^m}} BP^{((C_{2^m}))}$	<i>C</i> ₂	<i>C</i> ₄	<i>C</i> ₈	<i>C</i> ₁₆
Filtration	3	1	1	1
Order	2	4	4	4

For θ_n :

$\pi_{*}^{C_{2^m}}BP^{((C_{2^m}))}$	<i>C</i> ₂	<i>C</i> ₄	<i>C</i> ₈	<i>C</i> ₁₆
η^2	2	2	2	2
ν^2	6	2	2	2
σ^2	14	10	2	2
θ_4	30	18	2	2

Hill's Detection Tower

Conjecture (Hill)

1. As m increases, the filtration of a spherical class detected in $\pi_*(MU^{((C_{2^m}))})^{C_{2^m}}$ decreases and eventually stabilizes to its Adams–Novikov filtration.

Conjecture (Hill)

- 1. As m increases, the filtration of a spherical class detected in $\pi_*(MU^{((C_{2^m}))})^{C_{2^m}}$ decreases and eventually stabilizes to its Adams–Novikov filtration.
- 2. When this class first moves into its stable filtration, it achieves its maximal order that is detected by $\pi_*(MU^{((C_{2^m}))})^{C_{2^m}}$ for all m.

Conjecture (Hill)

- 1. As m increases, the filtration of a spherical class detected in $\pi_*(MU^{((C_{2^m}))})^{C_{2^m}}$ decreases and eventually stabilizes to its Adams–Novikov filtration.
- When this class first moves into its stable filtration, it achieves its maximal order that is detected by π_{*}(MU^{((C₂m))})^{C₂m} for all m.

Question (Hill)

What is the Hurewicz image of $\lim_{m \to \infty} \pi_*(MU^{((C_{2^m}))})^{C_{2^m}}$?

Hill's Detection Tower

Hill's Detection Tower

Slice SS vs. Homotopy Fixed Point SS

Slice SS vs. Homotopy Fixed Point SS

This is an isomorphism under the line of slope 1

$HFPSS(E_2^{hC_4})$

$SliceSS(E_2^{hC_4})$

► Gap Theorem is immediate at the *E*₂-page.

- ► Gap Theorem is immediate at the *E*₂-page.
- There is a region consisting of only regular G-slice cells. It's sparse.

- ► Gap Theorem is immediate at the *E*₂-page.
- ► There is a region consisting of only regular *G*-slice cells. It's sparse.
- ► Hill, Hopkins, and Ravenel proved *all* the differentials in this region (the Slice Differential Theorem).

- ► Gap Theorem is immediate at the *E*₂-page.
- There is a region consisting of only regular G-slice cells. It's sparse.
- ► Hill, Hopkins, and Ravenel proved *all* the differentials in this region (the Slice Differential Theorem).
- These differentials imply the Periodicity Theorem.

- ► Gap Theorem is immediate at the *E*₂-page.
- There is a region consisting of only regular G-slice cells. It's sparse.
- ► Hill, Hopkins, and Ravenel proved *all* the differentials in this region (the Slice Differential Theorem).
- These differentials imply the Periodicity Theorem.
- ► Slice SS + isomorphism + Periodicity Theorem $\stackrel{\text{recovers}}{\Longrightarrow}$ HFPSS

Restriction and transfer are maps of spectral sequences.

- Restriction and transfer are maps of spectral sequences.
- Norm "stretches out" differentials.

Theorem (Hill-Hopkins-Ravenel)

Let $d_r(x) = y$ be a d_r -differential in C_2 -SliceSS($MU^{((C_4))}$). If both $a_\sigma N_{C_2}^{C_4} x$ and $N_{C_2}^{C_4} y$ survive to the E_{2r-1} -page in C_4 -SliceSS($MU^{((C_4))}$), then

$$d_{2r-1}(a_{\sigma}N_{C_{2}}^{C_{4}}x)=N_{C_{2}}^{C_{4}}y.$$

Restriction

 C_4 -SliceSS

C₂-SliceSS

Transfer

C₄-SliceSS C₂-SliceSS

Norm

C₂-SliceSS:
$$d_7(u_{4\sigma_2}) = \bar{r}_1^2 \gamma \bar{r}_1 a_{\sigma_2}^7$$

$$\downarrow^{\text{apply norm}}$$
C₄-SliceSS: $d_{13}(u_{4\lambda}a_{\sigma}) = \bar{\mathfrak{d}}_1^3 a_{\lambda}^7$

$SliceSS(BP^{((C_4))}\langle 2 \rangle)$

 $SliceSS(BP^{((C_4))}\langle 2 \rangle): d_{13}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2\rangle): d_{15}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{19}$

$SliceSS(BP^{((C_4))}\langle 2 \rangle): d_{21}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{23}$

$SliceSS(BP^{((C_4))}\langle 2 \rangle): d_{27}$

$SliceSS(BP^{((C_4))}\langle 2 \rangle): d_{29}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{31}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{35}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{43}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2\rangle): d_{51}$

 $\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{53}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{55}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{59}$

 $\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle): d_{61}$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 2 \rangle) : E_{\infty}$

SliceSS($BP^{((C_4))}\langle 2 \rangle$): Hurewicz Images

• There are three periodicities for $D^{-1}BP^{((C_4))}\langle 2 \rangle$:

There are three periodicities for D⁻¹BP^{((C₄))}⟨2⟩: S^{3ρ₄} ∧ D⁻¹BP^{((C₄))}⟨2⟩ ≃ D⁻¹BP^{((C₄))}⟨2⟩

► There are three periodicities for D⁻¹BP^{((C₄))}(2):

- $S^{3\rho_4} \wedge D^{-1}BP^{((C_4))}(2) \simeq D^{-1}BP^{((C_4))}(2)$
- $\succ S^{32+32\sigma-32\lambda} \wedge D^{-1}BP^{((C_4))}\langle 2 \rangle \simeq D^{-1}BP^{((C_4))}\langle 2 \rangle$

► There are three periodicities for D⁻¹BP^{((C₄))}(2):

- $S^{3\rho_4} \wedge D^{-1}BP^{((C_4))}(2) \simeq D^{-1}BP^{((C_4))}(2)$
- $S^{32+32\sigma-32\lambda} \wedge D^{-1} BP^{((C_4))}(2) \simeq D^{-1} BP^{((C_4))}(2)$
- $S^{8-8\sigma} \wedge D^{-1}BP^{((C_4))}\langle 2 \rangle \simeq D^{-1}BP^{((C_4))}\langle 2 \rangle$

- There are three periodicities for $D^{-1}BP^{((C_4))}\langle 2 \rangle$:
 - $S^{3\rho_4} \wedge D^{-1}BP^{((C_4))}(2) \simeq D^{-1}BP^{((C_4))}(2)$
 - $S^{32+32\sigma-32\lambda} \wedge D^{-1} B P^{((C_4))} \langle 2 \rangle \simeq D^{-1} B P^{((C_4))} \langle 2 \rangle$
 - $S^{8-8\sigma} \wedge D^{-1}BP^{((C_4))}\langle 2 \rangle \simeq D^{-1}BP^{((C_4))}\langle 2 \rangle$
- These periodicities imply that $D^{-1}BP^{((C_4))}\langle 2 \rangle$ is 384-periodic! $32 \cdot (3\rho_4) + 3 \cdot (32 + 32\sigma - 32\lambda) + 24 \cdot (8 - 8\sigma)$ $= 32 \cdot (3 + 3\sigma + 3\lambda) + 3 \cdot (32 + 32\sigma - 32\lambda) + 24 \cdot (8 - 8\sigma)$ = 384

Thank you all for coming!