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Simplicial James-Hopf map and decompositions of the
unstable Adams spectral sequence for suspensions

This is an introductory talk on the first part of Fedor
Pavutnitskiy’s PhD thesis.
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Purpose of the project

• Towards to study the action of the Cohen group on the
lower central series spectral sequences (LCSSS)
converging to π∗(ΩΣX ) from Milnor’s construction, which is
part of Cohen’s program towards to attacking the Barratt
conjecture on the exponent problem.
• Decomposing LCSSS. For finite complexes X with two or

more cell, the growth of the number of Z/pr -summands in
π∗(ΣX ) goes exponentially in general if it occurs. The
decompositions of spectral sequences help for controlling
the differentials.
• The current work concludes that the Cohen group acts on

the lower central series spectral sequences (LCSSS)
converging to π∗(ΩΣX ). Further exploration may produce
the (higher degree) operations on LCSSS.
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Feature of Cohen groups
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∼=

H∞ - [ΩΣ(−),ΩΣ(−)]

∞∏
n=1

Hom(Ln(−),Ln(−))

?

� R∞

??
- [Ω2Σ(−),Ω2Σ(−)]

Ω

?



Motivation Simplicial James-Hopf maps Decompositions of the unstable Adams spectral sequence for suspensions

James Construction

Let X be a space with a basepoint ∗. The James construction
J(X ) is the free monoid generated by X subject to the single
relation that ∗ = 1. More precisely,
• Jn(X ) is the quotient space of X×n by the equivalence

relations generated by (x1, · · · , xi−1, ∗, xi , · · · , xn−1) ∼
(x1, · · · , xj−1, ∗, xj , · · · , xn−1).
• J(X ) =

⋃
n

Jn(X ) with weak topology.

James Theorem. If X is path-connected, then

J(X )
w' ΩΣX ,

i.e. J(X ) is (weakly) homotopy equivalent to the loop space of
the suspension of X .
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James-Hopf Maps

• From the definition, Jn(X )/Jn−1(X ) ∼= X∧n, the n-fold
self-smash of X .

The James-Hopf map Hk : J(X )→ J(X∧k ) is defined by

Hk (x1x2 · · · xn) =
∏

1≤i1<i2<···<ik≤n

(xi1 ∧ xi2 ∧ · · · xik )

with right lexicographic order.

Example
H2(x1x2x3x4) = (x1∧x2)(x1∧x3)(x2∧x3)(x1∧x4)(x2∧x4)(x3∧x4).
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James-Hopf Maps

The map Hk is an extension map in the diagram

Jk (X )
pinch
- Jk (X )/Jk−1(X ) = X∧k

J(X )
?

∩

Hk - J(X∧k )

?

∩

• Hk gives a concrete combinatorial construction of Hopf
invariants ΩΣX → ΩΣX∧k .
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James-Hopf Maps

• An important application is the EHP fibration
Sn ⊂ E- ΩSn+1 H2- ΩS2n+1 localized at 2,
• which induces EHP sequence on homotopy groups of

spheres.
• Example. There is a fibration S2 → ΩS3 → ΩS5 localized

at 2. By taking 2-connected cover, there is a fibration
S3 → Ω(S3〈3〉)→ ΩS5 and so

· · · → πn+2(S5)→ πn(S3)→ πn+1(S3)→ πn+1(S5)→ · · ·

for n ≥ 3.

Computations on homotopy groups: Hiroshi Toda,
"Composition Methods in Homotopy. Groups of Spheres,"
Princeton Univ. Press 1962.
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Simplicial sets

• The notion of simplicial set is a generalization of simplicial
complex with adding degenerate simplices.

• A simplicial set X refers to a sequence of sets
X = {Xn}n≥0, where Xn can be thought as the set of
n-simplices, with face operations di : Xn → Xn−1, 0 ≤ i ≤ n,
and degeneracy operations si : Xn → Xn+1, 0 ≤ i ≤ n,
satisfying simplicial identities.

• Remark. Simpicial sets←→ cofunctors from the category
of finite ordered sets and order-preserving functions
(f (x) ≤ f (y) if x ≤ y ) to the category of sets. (Related to,
but different from finite injective objects.)
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Simplicial homotopy theory

• The notion of simplicial set provides a model to work on
homotopy theory of CW -complexes in a combinatorial way.

• One of key points by Dan Kan’s work: For a fibrant
simplicial set (Kan’s complex) X , the homotopy group of
its geometric realization πn(|X |) can be combinatorially
defined using the data from X , which is the quotient of
spherical n-simplicies (x ∈ Xn with all dix = ∗) modulo
homotopy relations.
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Simplicial groups

• A simplicial group is a simplicial set G = {Gn}n≥0 such that
each Gn is a group and faces di and degeneracies si are
group homomorphisms.

• John Moore’s Theorems: Any simplicial group G is
fibrant, and

πn(|G|) ∼=

n⋂
i=0

Ker(di : Gn → Gn−1)

d0

(
n+1⋂
i=1

(di : Gn+1 → Gn)

) .

• Note. Any (pointed) simplicial map between simplicial
groups (not necessary simplicial homomorphism) induces
homomorphism on homotopy groups.
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The James-Hopf maps on simplicial free monoids

• A point ∗ in a simplicial set X refers to a sequence
{sn

0∗}n≥0 with sn
0∗ ∈ Xn. (Note. A vertex v induces a

sequence ([v ], [vv ], [vvv ], · · · ))

• Let X be a simplicial set with a basepoint ∗. The James
construction J(X ) is the (simplicial) free monoid
generated by X subject to ∗ = 1, i.e. J(X )n is the free
monoid generated by Xn subject to sn

0∗ = 1.

• The geometric realization |J(X )| ∼= J(|X |) under compactly
generated topology, and the James-Hopf map

Hk : J(X )→ J(X∧k )

in simplicial setting is defined in the same way as in
geometry.
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Shortage of simplicial monoids and Milnor’s
construction

• The simplicial James construction J(X ) is a very nice
combinatorial model for ΩΣ|X |.
• One shortage is that J(X ) is NOT fibrant. Hence, similar

to geometric situation, it is difficult to see the behavior of
Hk : J(X )→ J(X∧k ) on the homotopy groups.

• Milnor’s construction: Let X be a simplicial set with a
basepoint ∗. Milnor’s construction F [X ] is the (simplicial)
free group generated X subject to ∗ = 1. In other words,
F [X ] is the group completion of J(X ).
• The geometric realization |F [X ]| ' ΩΣ|X |.
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Fedor Pavutnitskiy’s work—Question

• Question. How to give a concrete combinatorial
construction of the James-Hopf map Hk : F [X ]→ F [X∧k ]?

• The tricky thing is how to define Hk on the reduced words
x ε11 · · · x

εn
n with some εi = −1.
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Fedor Pavutnitskiy’s work—Solution to the Question
• The k -th combinatorial James-Hopf map is a natural

transformation Hk : F [−]→ F [(−)∧k ] defined for any
pointed (simplicial) set X on reduced words as

Hk (x ε11 . . . x εnn ) =
∏

(i1...ik )

(xi1 ∧ . . . ∧ xik )εi1 ...εik

here product is taken in lexicographical order with
reversing the orders on some parts over sequences of
indices (i1 . . . ik ) such that

ij ≤ ij+1 −
εij+1 + 1

2
that’s it, product is taken over all subsequences (i1 . . . ik ) of
(1 . . . n) with possible repetition of indices, and repetition of
index ij occurs only if corresponding exponent εij is
negative with under such a case reversing the order of the
product of the terms ending with ij .
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Example

Let w = xyzz−1y−1x−1. We compute H2(w). In this case,
x1 = x , x2 = y , x3 = z, x−1

4 = z−1, x−1
5 = y−1 and x−1

6 = x−1.
We denote (ij) for (xi ∧ xj).

H2(x1x2x3x−1
4 x−1

5 x−1
6 )

= (12)(13)(23)
(44)+1(34)−1(24)−1(14)−1 order reversed
(55)+1(45)+1(35)−1(25)−1(15)−1 order reversed
(66)+1(56)+1(46)+1(36)−1(26)−1(16)−1 order reversed

= (x ∧ y)(x ∧ z)(y ∧ z)
(z ∧ z)+1(z ∧ z)−1(y ∧ z)−1(x ∧ z)−1

(y ∧ y)+1(z ∧ y)+1(z ∧ y)−1(y ∧ y)−1(x ∧ y)−1

(x ∧ x)+1(y ∧ x)+1(z ∧ x)+1(z ∧ x)−1(y ∧ x)−1(x ∧ x)−1

= 1
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Extension of James-Hopf map for James construction

Hk is a natural extension of a combinatorial James-Hopf map
for James construction:

F [X ]
Hk- F [X∧k ]

J(X )
∪

6

Hk- J(X∧k )

∪

6
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Properties of Hk : F [X ]→ F [X∧k ]
There are many properties of the James-Hopf map
Hk : F [X ]→ F [X∧k ]. One nice property is that Hk nicely fits
with (integral or mod p) lower central series:
• Theorem (Pavutnitskiy-Wu). Simplicial James-Hopf map

Hm : F [X ]→ F [X∧m] sends lower central series to a
weighted one:

Hm(γn) ⊂ γw
n , Hm(γ

[p]
n ) ⊂ γ[p],w

n

Here γ1(G) = G and γn+1(G) = [γnG,G]. The weighted lower
central series of F [X∧m] is: γw

n (F [X∧m]) = F [X∧m] for n < m,
and, for n ≥ m with n = qm + s and s < m,

γw
n (F [X∧m]) =

{
γq(F [X∧m]) if s = 0
γq+1(F [X∧m]) if s > 0

The γ[p]
n and γ[p],w

n are mod p lower central series and the
weighted one.
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Unstable Adams spectral sequence

• If X is path-connected, the mod p lower central series of
F [X ] induces a spectral sequence (unstable Adams
spectral sequence or mod p lower central series spectral
sequence) convergent to π∗(ΣX ).

• Note. F [X ] ' ΩΣX . For general cases, mod p lower
central series of Kan’s construction GY ' ΩY induces a
spectral sequence convergent to π∗(Y ) for simply
connected simplicial sets Y .

• We are interested in mod p LCSSS of F [X ] for X having
two or more cells.
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Complexity of homotopy groups of suspended
complexes having two or more cells

The simplest case may be the mod pr Moore space
Pn(pr ) = Sn−1 ∪[pr ] en. As an illustrative example, the following
is a statement on mod 2 Moore space
Pn(2) = Sn−1 ∪[2] en = Σn−2RP2.

• Theorem (Ruizhi Huang-Wu). Pn+1(2) is Z/2i -hyperbolic
for each n ≥ 2 and i = 1, 2, 3. Briefly speaking, the
function f (t)= the number of occurrence of Z/2i -summands
in πj(Pn+1(2)) with j ≤ t has exponential growth.

• Decompositions of mod p LCSSS of F [X ] may help for
reducing the computational complexity in spectral
sequence.
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The Cohen groups

Briefly speaking the Cohen group H is a subgroup of self
natural transformations of the functor ΩΣ (on the homotopy
categories of path-connected CW -complexes) generated by
(infinite) product of the following type of maps

ΩΣ(X )
Hk- ΩΣ(X∧k )

Ω(α)- ΩΣ(X∧k )
ΩWk- ΩΣX , (1)

where α : Σ(X∧k )→ Σ(X∧k ) runs over linear combinations of
the suspension of the permutations, and Wk is the Whitehead
product.
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Selick-Wu Program
References.
• Paul Selick and Jie Wu, On natural coalgebra

decompositions of tensor algebras and loop suspensions ,
Memoirs AMS, Vol. 148, No. 701, 2000.
• And generalizations are given in the following up papers.

• Bott-Samelson Theorem. Let homology be taken with
coefficients in a field. For a simply connected co-H-space
Y , H∗(ΩY ) ∼= T (Σ−1H̃∗(Y )).
• By using the Cohen group, Selick-Wu-Theoriault: Any

functorial decomposition of the functor T from Fp-vector
spaces to the category of coalgebras induces a functorial
decomposition of ΩY for simply connected co-H-spaces Y
localized at p with the property that the homology of its
factors are given by the corresponding coalgebra factor in
the decomposition of T .



Motivation Simplicial James-Hopf maps Decompositions of the unstable Adams spectral sequence for suspensions

The role of Hk : F [X ]→ F [X∧k ] in decomposing mod p
LCSSS

The maps in Equation (1) can be managed in the following way
on Milnor’s construction:

F [X ]
Hk- F [X∧k ]

α̃- F [X∧k ]
W̃k- F [X ], (2)

where α̃ can be chosen as a simplicial homomorphism
extending a simplicial map X∧k → F [X∧k ] and W̃k is the
simplicial homomorphism extending the iterated commutator
mapping X∧k → F [X ], x1 ∧ x2 ∧ · · · ∧ xk 7→ [[x1, x2], . . . , xk ].

The theorem that Hk preserves weighted lower central series
(and weighted mod p lower central series) guarantees that the
maps in Equation (2) preserves the lower central series (and
mod p lower central series).
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Theorem
Here I only state a corollary as a theorem:
• Theorem (Pavutnitskiy-Wu). Any natural coalgebra

decomposition T ' A⊗ B induce a decomposition of
spectral sequence

E1
s,t = πs(Lt

res(Z/p[X ])) =⇒ πs+t (F [X ]),

E r
s,t = E r

s,t (A(Z/p[X ])⊕ E r
s,t (B(Z/p[X ]))

as a functor on sSet∗, with first pages of
E r

s,t (A(Z/p[X ])), E r
s,t (B(Z/p[X ])) given by homotopy

groups of primitive elements of simplicial coalgebras A and
B:

E1
s,t (A(Z/p[X ])) = πs(PA(Z/p[X ]))t , E1

s,t (B) = πs(PB(Z/p[X ]))t ,

where Z/p[X ] = Z/p(X )/Z/p(∗)
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Thank You!
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