
HHR KERVAIRE INVARIANT PROBLEM SET

Abstract. This note contains some exercises and open problems related to

HHR’s solution to the Kervaire invariant problem. The exercises are meant to

complement the lectures. In particular, in order to work on some of the open
problems, it is necessary to be comfortable with some slice spectral sequence

computations.

1. Exercises

1.1. Exercise 1: SliceSS(MUR) and SliceSS(BPR). Recall that

π∗MU = Z[x1, x2, x3, . . .], |xi| = 2i.

If we work 2-locally, MU splits as a wedge of suspensions of BP (the Brown–
Peterson spectrum), whose homotopy groups are

π∗(BP ) = Z(2)[v1, v2, v3, . . .],

where vi := x2i−1. Computationally, the spectrum BP is often easier to work with
than MU because its homotopy groups are smaller. Moreover, no information is
lost by going from MU to BP .

The same story is true C2-equivariantly. Recall from Danny’s talk that

πC2
∗ρC2

MUR = Z(2)[x̄1, x̄2, x̄3, . . .].

It turns out that if we look 2-locally, the spectrum MUR splits as a wedge of
suspensions (by regular representation spheres) of BPR. We have

πC2
∗ρC2

BPR = Z(2)[v̄1, v̄2, v̄3, . . .].

The following exercises are supposed to guide you through some of the C2-slice
spectral sequence computations. If you are stuck, refer to Mingcong’s talk notes.

(1) Write down the slices of MUR and BPR. If you are stuck, refer to Danny’s
talk notes and Section 6 of HHR (the Slice Theorem).

(2) By writing down the C2-equivariant cell decomposition of SnρC2 , compute
the homotopy groups

π∗(HZ ∧ SnρC2 ) = HC2
∗ (SnρC2 ;Z)

by writing down the equivariant cell complex of SnρC2 .
(3) From (1) and (2), deduce the E1-page of the slice spectral sequence for

MUR and BPR.
(4) Show that if X is a C2-spectrum, then

ΦC2(X) ' (ẼC2 ∧X)C2 ' (a−1
σ X)C2 .

From the construction of MUR and BPR, we have the following equiva-
lences:

ΦC2(MUR) = MO

ΦC2(BPR) = HF2.
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(5) By inverting a−1
σ in the slice spectral sequence and (4), deduce all the

differentials in SliceSS(MUR) and SliceSS(BPR).

1.2. Exercise 2: SliceSS(kR) and SliceSS(KR). In this exercise, we are going to
compute the C2-SliceSS of Atiyah’s Real K-theory KR and its connective version
kR.

Recall from Mingcong’s talk that

kR = BPR/(v̄2, v̄3, . . .),

and

KR = v̄−1
1 BPR/(v̄2, v̄3, . . .).

(1) Write down the slices of kR and KR. (Note: KR have negative slices.)
(2) Compute the E1-page of the slice spectral sequence for kR and KR.
(3) The quotient map

MUR −→ kR,

induces a map

SliceSS(MUR) −→ kR

of spectral sequences. Use the fact that we have deduced all the differentials
in SliceSS(MUR) in Exercise 1 to deduce the differentials in SliceSS(kR).

(4) The map

kR −→ KR

induces a map

SliceSS(kR) −→ SliceSS(KR)

of spectral sequences. Use the answer in (3) to deduce all the differentials
in SliceSS(KR). Observe that the final result is 8 periodic.

(5) Since KC2

R = KO, we have used the slice spectral sequence to compute
the homotopy groups of KO, the real orthogonal K-theory. Show that
KC2

R ' KhC2

R .
(6) Prove that for the connective Real K-theory,

kC2

R 6' k
hC2

R .

In other words, the homotopy fixed point theorem is not true for connec-
tive Real K-theory. (Hint: compare the slice spectral sequence with the
homotopy fixed point spectral sequence)

1.3. Exercise 3: Real Johnson–Wilson Theory ER(n). There is a more gen-
eral construction that you can make that are the higher height analogues of Atiyah’s
Real K-theory, starting from BPR:

BPR〈n〉 := BPR/(v̄n+1, v̄n+2, . . .)

ER(n) := v̄−1
n BPR〈n〉.

The spectrum ER(n) is called Real–Johnson–Wilson theory. It is the C2-equivariant
spectrum lifting E(n), the classical Johnson–Wilson theory. See a list of papers by
Kitchloo, Wilson, and Lorman.
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(1) Use the induced map

SliceSS(BPR) −→ SliceSS(BPR〈n〉)

and

SliceSS(BPR) −→ SliceSS(ER(n))

to compute the slice spectral sequence of BPR〈n〉 and ER(n).
(2) Show that ER(n)C2 ' ER(n)hC2 , but BPR〈n〉C2 6' BPR〈n〉hC2 .
(3) Prove that

MUC2

R 'MUhC2

R

and

BPC2

R ' BPhC2

R

by analyzing the map of spectral sequences

SliceSS(MUR) −→ HFPSS(MUR)

SliceSS(BPR) −→ HFPSS(BPR).

Here, HFPSS is the C2-homotopy fixed point spectral sequence. The moral
of the story here is that for n finite, none of BPR〈n〉 are cofree. But when
n→∞, BPR becomes cofree.

The spectrum ER(n) have been studied extensively by Hu–Kriz, Kitchloo–Wilson,
and Kitchloo–Lorman–Wilson. For instance, Kitchloo and Wilson computed ER(n)∗C2

(RPn)
and used this computation to prove some non-immersion results of real projective
spaces. There are a variety of open problems surrounding ER(n). We will describe
them below in the open problems section.

Here are some useful references regarding ER(n):

(1) Kitchloo–Wilson: “On fibrations related to real spectra”.
(2) Kitchloo–Wilson: “The second real Johnson–Wilson theory and non-immersions

of RPn part I, part II”.
(3) Kitchloo–Lorman–Wilson: “Landweber flat real pairs and ER(n)-cohomology”

2. Open Problems (to be expanded and refined)

2.1. Equivariant commutativity of ER(n). The underlying spectrum of ER(n)
is E(n), the classical Johnson–Wilson theory. We know that E(n) is a homotopy
commutative ring spectrum.

The goal of this project is to investigate whether ER(n)C2 is a homotopy commu-
tative ring spectrum. If it is, then this would imply that ER(n) is a C2-equivariant
homotopy commutative ring spectrum.

Kitchloo–Wilson, in their paper “multiplicative structure on Real Johnson–
Wilson theory” have shown that ER(n) is a homotopy commutative ring spectrum
up to phantom maps. Can we do better and show they are actually homotopy
commutative?

2.2. Homology of a point. As we have seen in HHR’s proof, the Gap theorem
relies on a crucial vanishing result in πC2n

F HZ.

Compute πGFHZ and πGFHA for different groups (and different Eilenberg Maclane

objects). Do similar vanishing results hold?
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2.3. Slices of suspensions of Eilenberg Maclane spectra. In Danny’s talk,
we have seen that the slice tower of X and the slice tower of ΣkρGX are intimately
related. In general, knowing the slice tower of X does not give the slice tower of
ΣVX.

Question 2.1. What is the relationship between the slice tower of X and the slice
tower of suspensions of X?

In particular, when X is the Eilenberg Maclane spectrum, what is the relation-
ship between the slice tower of HZ and the slice tower of ΣVHZ?

See Hill–Hopkins–Ravenel: “The slice spectral sequence for certain RO(Cpn)-
graded suspensions of HZ” for some work that has been done in this direction.

2.4. Computing ER(n)∗C2
(RPm) by using the slice spectral sequence. Kitchloo–

Wilson computed πC2
∗ ER(n) and ER(n)∗C2

(RPm) by a Bockstein spectral sequence.
Compute ER(n)∗C2

(RPm) by using the slice spectral sequence? A good place to
start is to recover Kitchloo–Wilson’s computation of ER(2)∗C2

(RPm) by using the
slice spectral sequence.

Once these cohomology theories are computed, is it possible to obtain better
non-immersion results of real projective spaces?

2.5. Slice tower of S0. In the motivic slice story, the slices of S0 are known
(see Marc Levine’s paper “The Adams–Novikov spectral sequence and Voevodsky’s
slice tower”). For any group G (even when G = C2), the slice tower of S0 is
unknown. What is the slice tower of S0? How is the slice spectral sequence related
to the classical spectral sequences (AdamsSS, Adams–Novikov SS) that computes
the stable homotopy groups of spheres?

2.6. Hurewicz images of MU ((G))? From Hill–Hopkins–Ravenel’s solution, we
know that the Kervaire invariant elements are detected by the G-fixed points of
MU ((G)). Are there any other elements in the stable homotopy groups of spheres
that are detected by πG∗ MU ((G))?
References:

(1) Hill: “on the fate of η3 in higher analogues of Real bordism”
(2) Li–Shi–Wang–Xu: “Hurewicz images of Real bordism theory and Real

Johnson–Wilson theories”

2.7. Equivariant Mahowald Invariant. Given two irreducible representations
V and W of G, there are associated Euler classes aV ∈ πG−V S0 and aW ∈ πG−WS0.
Given a power of aV , how divisible is it by powers of aW ? In other words, for what
p, q ≥ 2 do the following diagram exist:

SpV

S0 SqW

γ
apV

aqW

This has connections to the classical Mahowald invariant and in general, for certain
groups G, this has applications in geometric topology.
References:

(1) Crabb: “periodicity in Z/4-equivariant stable homotopy theory”
(2) Schmidt: “Spin 4-manifolds and Pin(2)-equivariant homotopy theory”
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(3) Stolz: “the level of real projective spaces”
(4) Hopkins–Lin–Shi–Xu: “intersection forms of spin 4-manifolds and the Pin(2)-

equivariant Mahowald invariant”

2.8. Computing the equivariant dual Steenrod algebra. The Hill–Hopkins–
Ravenel reduction theorem states that

MU ((G))/(G · r̄1, G · r̄2, . . .) ' HZ.
How can we leverage this fact to compute the equivariant Steenrod algebra

HZ ∧HZ?
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