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1 Introduction

We will review classical category theory and space-level homotopy theory. We will talk about motivations
for ∞-categories. We avoid using simplicial language in the treatments.

2 Classical theory reviews

First we review the language of categories. Recall the following definition:

A category C consists of the following data:
(1). A collection of objects of C. If X is an object of C, we usually write X ∈ C.
(2). For every pair of objects X , Y ∈ C, a set of morphisms from X to Y , the set is usually denoted

as C(X , Y ) or HomC(X , Y ).
(3). For every X ∈ C, an identity morphism idX ∈ C(X , X ).
(4). For every triple X , Y , Z ∈ C, a composition map

◦ : C(X , Y )× C(Y , Z )→ C(X , Z ).

(5). The composition is associative and unital.

Example. The category of sets, denotes by Set. The category of R-modules, denoted by RMod.
A morphism f : X → Y is said to be an isomorphism, if there exists g : Y → X such that

g ◦ f = IdX and f ◦ g = IdY . Isomorphisms are bijections in the category Set.

A functor is a morphism between categories. Let C and D be categories, a functor F : C → D

assigns an object FX ∈ D for any X ∈ C, and a morphism Ff : FX → FY for any f : X → Y in a way
that respects both unitality and associativity. For example, for f : X → Y , g : Y → Z , the associativity
is preserved as

Fg ◦ Ff = F (g ◦ f ).

A functor is full/faithful if it induces surjection/injection on hom-sets.

A natural transformation is a morphismn between functors. Let F , G : C → D be two functors, a
natural transformation F ⇒ G assigns for any X ∈ C a morphism FX → GX , in a natural way. Given
two categories C,D, there is a functor category Fun(C,D), also denoted by DC. Its objects are functors
from C to D, and morphisms are natural transformations between functors. Isomorphisms in functor
categories are called natural isomorphisms. Two categories C,D are equivalent, if there are functors
F : C→ D and G : D→ C and natural isomorphisms GF ⇒ IdC, FG ⇒ IdD.
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Two functors F : C → D, G : D → C are said to be adjoint, if there are natural bijections
D(FX , Y ) ∼= C(X , GY ). An adjoint, if it exists, is unique up to natural isomorphism.

A category is small if its collection of objects form a set. Let B,C be categories, and B be small. A
B-shaped diagram in C is a functor F : B→ C. There is a generalized diagonal functor ∆B : C→ CB.
The colimit is the left adjoint of ∆B.

The duality plays an important role in category theory. The opposite category reverses all arrows,
and produces dual notions, including contravariant functors, limits, etc. Left adjoint preserves colimits
and right adjoint preserves limits.

Example. (Co)product, pushout, pullback, sequential (co)limit.

Let Top be the category of compactly generated weak Hausdorff (CGWH) topological spaces, with
continuous maps as morphisms. We usually write ∗ for the basepoint. We denote the category of based
CGWH spaces by Top∗/, whose morphisms are continuous maps that preserve basepoints. We usually
use capital letters X , Y , Z , ... for spaces. A pair of space A ⊂ X is denoted as (X , A).

The topology of CGWH spaces is determined by compact Hausdorff subsets. The category Top is a
full subcategory of the original category of topological spaces. It is bi-complete (has all small limits and
colimits) and Cartesian closed (the following adjunction holds):

ZX×Y ∼= (ZY )X .

All CW complexes (to be revisited later) are CGWH.

The category Top∗/ enjoys similar properties. The smash product is defined by X ∧ Y := X ×
Y /X ∨Y . The function space F (X , Y ) is the set of based maps from X to Y . The adjunction reads as

F (X ∧ Y , Z ) ∼= F (X , F (Y , Z )).

There is a closed symmetric monoidal structure (Top∗/,∧, S0).

A homotopy is a map X × I → Y , and a based homotopy is a map X ∧ I+ → Y . We will denote the
homotopy categories respectively by hTop and hTop∗/, the morphisms are homotopy classes of maps.
However, these homotopy categories are not complete or cocomplete.

The set of based homotopy classes of maps between X and Y will be denoted by [X , Y ]. The
homotopy groups, are πn(X ) = [Sn, X ]. Since

π0F (X , Y ) = Top(I , F (X , Y )) = Top∗/(I+, F (X , Y )) = Top∗/(X ∧ I+, Y ) = [X , Y ],

the adjunction passes to homotopy categories.
Some more constructions and examples: In Top∗/. The reduced cone, is CX = X ∧ I ; the path

space, is PX = F (I , X ). The reduced suspension, is ΣX = X ∧ S1; the loop space, is ΩX = F (S1, X ).
We have natural bijection

[ΣX , Y ] ∼= [X , ΩY ].

A cofibration is a map i : A → X that satisfies homotopy extension property (HEP). A cofibration
is always a closed inclusion. It could be tested by the neighborhood-deformation (NDR) criterion. In

Top∗/, there is a parallel definition of based cofibration, where all spaces and maps are based.
Let f : X → Y be a based map, the homotopy cofiber Cf is

Cf = Y ∪f CX .
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The inclusion i : Y → Cf is a cofibration (since it is a pushout of X → CX ). Let π : Cf → Cf /Y = ΣX
be the quotient map, we have the following based cofiber sequence:

X
f−→ Y

i−→ Cf
π−→ ΣX

−Σf−−→ ΣY → ...

Lemma. If i : A→ X is a based cofibration, then the quotient map

q : Ci → Ci/CA ∼= X /A

is a based homotopy equivalence.
Theorem. For any based space Z , the induced sequence

...→ [ΣX , Z ]→ [Cf , Z ]→ [Y , Z ]→ [X , Z ].

is exact. Since Sn for n ≥ 1 is a cogroup object and is abelian for n ≥ 2, the sequence is exact as
groups to the left of [ΣX , Z ] and exact as abelian groups to the left of [Σ2X , Z ].

Dually, a fibration is a surjective map p : X → Y that satisfies covering homotopy property (CHP).
This includes the notions of covering spaces, vector bundles, and fiber bundles. Given a based map
f : X → Y , there is a dual fiber sequence, but we only give a special case of it here:

Theorem. Let p : E → B be a fibration, choose a basepoint from B and let F = p−1(∗) ⊂ E be a
fiber. There is a long exact sequnce of homotopy groups:

...→ πn(F )→ πn(E )→ πn(B)
∂−→ πn−1(F )→ ...→ π0(E ).

Another example you may know is the long exact sequence of homotopy groups for a pair of space.

A map f : X → Y is called a weak homotopy equivalence if f∗ : πn(X )→ πn(Y ) is an isomorphism
for all n and all choices of basepoints in X .

Now we introduce an important type of spaces: CW complexes. Let X 0 be a discrete set. Inductively,
X n+1 is the pushout obtained from X n via attatching map ä Sn → X n and cofibration ä Sn →
ä Dn+1. A CW complex is the colimit (union with weak topology) of any such expanding sequence
X 0 → X 1 → .... If X = X n, we say X is of dimension n.

A subcomplex A ⊂ X is a subspace and a CW complex whose cells are also cells of X . We use
TopCW to denote the full subcategory of spaces homeomorphic to CW complexes.

A CW complex is Hausdorff, locally contractible and paracompact. A map f : X → Y is said to be
cellular if f (X n) ⊂ Y n.

Examples. Sn, RPn and their CW structures.

We record the following facts:
(a). The wedge sum of CW complexes (Xi , xi ) based at vertices is a CW complex which contains

each Xi as a subcomplex.
(b). If (X , A) is a CW pair, then the quotient X /A is a CW complex.
(c). If A is a subcomplex of X , Y is a CW complex, and f : A → Y is a cellular map, then the

pushout Y ∪f X is a CW complex which contains Y as a subcomplex.
(d). The colimit of inclusions Xi → Xi+1 of subcomplexes is a CW complex that contains each Xi

as a subcomplex.
(e). The product X × Y of CW complexes is a CW complex.
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CW complexes are nice: The definition is in some sense combinatorial; and it turns out that any
space can be replaced functorially by weakly equivalent CW complexes. As a result we would turn to
study the (homotopy) category of CW complexes. In fact, most spaces are homotopy equivalent to CW
complexes.

Lemma. If (X , A) is a CW pair, then the inclusion i : A→ X is a cofibration.
Theorem. (Whitehead) A weak equivalence between CW complexes is a homotopy equivalence.
Theorem. (Cellular approximation) Any map f : (X , A)→ (Y , B) between CW pairs is homotopic

to a cellular map relative to A.
Theorem. (CW approximation) There is a functor Γ : Top → hTop and a natural transformation

γ : Γ⇒ Id that assigns a CW complex ΓX and a weak equivalence ΓX → X to each space X .

There is a more general notion (model category) of homotopy categories. If a category C is equipped
with a collection of morphisms called weak equivalences, satisfying certain axioms, one may form a uni-
versal localization by formally inverting all weak equivalences. After inverting weak homotopy equilvances
in Top, the homotopy category is equivalent to the naive homotopy category of the full subcategory
TopCW.

The familiar constructions: homotopy groups, homology and cohomology, are all weak homotopy
equivalence invariants. If is favorable that all that we concern behave well with respect to weak equiva-
lences. Note that the homotopy category is not bi-complete.

Given a pair of maps f : A → X and g : A → Y , the homotopy pushout, is the pushout of maps
A ä A→ A× I and A ä A→ X ä Y . The based counterpart construction is analogous. Note that the
homotopy cofiber of f : X → Y is the homotopy pushout of ∗ ← X → Y .

Given a seqeunce of maps of based spaces

X0 → X1 → X2 → ...,

the mapping telescope is the quotient space of the disjoint union of reduced cylinders:

ä
n∈N

(Xn ∧ [n, n + 1]+)/ ∼

where the equivalent relation quotiented out is (xn, n) ∼ (f (xn), n + 1).

The two examples above are special homotopy colimits. The basic idea is to replace gluing in colimit
construction by gluing up to homotopy. We won’t explain the general construction for all diagrams, but
we record that homotopy colimit preserves weak equivalences, and satisfies certain universal property as
the total left derived functor of colimits.

3 Higher categorical point of view

In this section we introduce the idea of infinity categories.
Consider the category of all (small) categories, its morphisms are functors. For two categories C,D,

the hom-set Fun(C,D) are functors from C to D. It forms a functor category, whose morphisms are
natural transformations. Thus natural transformations are morphisms between morphisms (functors).
This sheds light on the idea of higher categories. Roughly speaking, they are categories equipped with
higher k-morphisms for each k = 1, 2, 3, ...
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Example. Let X be a space, the fundamental groupoid of X , is a groupoid whose objects are the
points of X , and morphisms are homotopy classes of paths of X . Clearly all morphisms are invertible.

Now let 0 < n < ∞, we define an n-category ΠnX . The objects are the points of X . If x , y ∈ X , the
morphisms from x to y are paths from x to y ; the 2-morphisms are homotopies of paths; the 3-morphisms
are homotopies of homotopies, etc. Two n-morphisms are identified if they are homotopic. There should
of course be requirements for coherence of higher morphisms, but we won’t bother ourselves with them.
For example, when n = 1, the definition reduces to the fundamental groupoids of spaces we’ve defined.

We can also define Π∞X . It has all higher morphisms. We call it an ∞-groupoid, as all morphisms
are invertible.

We’ve seen an example of a 2-category. Its hom-sets are all 1-categories. It turns out that to define
∞-categories, most of the higher morphisms should be invertible. Hence we use the term (∞, n)-category
to refer to ∞-categories whose all k-morphisms are invertible for k > n. Therefore for (∞, 1)-categories
as an example, each hom-set should be an (∞, 0)-category, i.e., an ∞-groupoid.

There are many models to strictly define ∞-categories. Despite different methods, a key principle is
the homotopy hypothesis. The examples Π∞X are all ∞-groupoids. Conversely, homotopy hypothesis
asserts that every ∞-groupoid has the form Π∞X for some topological space X .

In detail, it proves an equivalence between the category of ∞-groupoids and the category of topo-
logical spaces. This leads to a naive definition of (∞, 1)-categories: A topological category is a category
enriched over Top. Explicitly speaking, a topological category C consists of objects together with a
space C(X , Y ) for any pair of objects. The composition law is given by continuous maps.

From now on by ∞-categories we mean (∞, 1)-categories. One thing to keep in mind is that spaces
replace sets in the new context. An alternative definition, using simplicial methods, will be covered in
today’s evening session.

Let f : X → Y be a morphism in a topological category C, f is an equivalence if one of the following
equivalent condition holds:

(a). The morphism f has a homotopy inverse.
(b). For every object Z ∈ C, the induced map C(Z , X )→ C(Z , Y ) is a homotopy equivalence.
(c). For every object Z ∈ C, the induced map C(Z , X )→ C(Z , Y ) is a weak homotopy equivalence.

We omit the definition of functors between ∞-categories. We present informally some results in
∞-categoy theory. We will use S to denote the ∞-category of CW complexes.

One central result in category theory is the Yoneda lemma. Let C be a category, the functor category
Fun(Cop, Set) is also called the (set-valued) presheaf category of C, denoted as PSh(C). Any object
c ∈ C determines a presheaf C(−, c) : c ′ 7→ C(c ′, c).

Proposition. The Yoneda embedding j : C→ PSh(C) is fully faithful.
Lemma. If F : C → Set is a functor and c ∈ C. The set of natural transformations from C(c ,−)

to F is isomorphic to Fc .

Let C be an ∞-category, an ∞-presheaf on C is an ∞-functor Cop → S , P(C) will denote the
∞-category of ∞-presheaves. The following results hold:

Proposition. The ∞-category P(C) admits all small limits and colimits.
Proposition. The Yoneda embedding j : C→ P(C) is fully faithful.
Let D be an ∞-category which admits small colimits. There is an equivalence of ∞-categories

FunL(P(C),D)→ Fun(C,D),
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where FunL(P(S),C) is the full subcategory of Fun(P(S),C) spanned by functors preserving small
colimits.

Proposition. Let C be a small ∞-category, the Yoneda embedding j : C → P(C) generates P(C)
under small colimits.

Thus the ∞-Yoneda embedding determines the ∞-presheaf category to a much greater extent. As an
example, if C is a point, P(C) is equivalent to S . We conclude that the category of spaces is generated
by one point under colimits. And the universality reads as: a functor from a point to a category which
has small colimits extends uniquely up to homotopy to a functor from the category of spaces.
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