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Suppose G is a finite group, and let OrbG be the orbit category of G . By
Elmendorf’s theorem (cf. Talk 2.2), there is an equivalence between the homotopy
theory of G -spaces, and the homotopy theory of topological presheaves over OrbG .
In this note, we introduce Mackey functors and explain Guillou and May’s version
of Elmendorf’s theorem for G -spectra. This result gives an algebraic perspective on
equivariant spectra.1

1 Mackey functors

Spectra are higher algebraic analogues of abelian groups. Thus, we begin by con-
sidering the fixed points of G -modules, and then we turn to G -spectra in general.

Suppose pM,`, 0q is a G -module. By neglect of structure, M is a G -set, and
therefore its fixed points MH – SetG pG{H, Mq form a presheaf over OrbG . Spelled
out, we have an inclusion MK Ðâ MH for every inclusion K Ă H Ă G of subgroups,
and an isomorphism gp´q : MH Ñ MgHg´1

for every element g P G and subgroup
H Ă G .

The extra additive structure on M induces extra additive structure on the fixed
points of M. Suppose H Ă G is a subgroup. By adjunction, an H-fixed point
G{H Ñ M is equivalent to a G -linear map ZrG{Hs Ñ M, and thus MH –

homZrGspZrG{Hs, Mq is an abelian group. More interestingly, for any inclusion
of subgroups K Ă H Ă G , there is a G -linear map ZrG{Hs Ñ ZrG{K s that rep-
resents the element

ř

H{K rK P ZrG{K sH . Pulling back along it yields an additive
“transfer map”

trHK pxq “
ÿ

rKPH{K

rx : MK Ñ MH .

This constellation of data is an example of a Mackey functor. We give an axiomatic
definition now, and we reformulate it in conceptual terms later.

Definition 1.1. A G -Mackey functor M consists of

1. an abelian group MpHq for every subgroup H Ă G , and

1Many thanks to Mike Hill for his suggestions and comments on this material.
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2. additive restriction, transfer, and conjugation homomorphisms

resHK : MpHq Ñ MpK q trHK : MpK q Ñ MpHq cg : MpHq Ñ MpgHg´1q

for all subgroups K Ă H Ă G and elements g P G ,

such that:

(i) resHH “ trHH “ id for all subgroups H Ă G ,

(ii) ch : MpHq Ñ MpHq is the identity map for all subgroups H Ă G and h P H,

(iii) resLK resHL “ resHK and trHL trLK “ trHK for all subgroups K Ă L Ă H Ă G ,

(iv) cgch “ cgh for all elements g , h P G ,

(v) cg resHK “ resgHg
´1

gKg´1cg and cg trHK “ trgHg
´1

gKg´1cg for all subgroups K Ă H Ă G
and elements g P G , and

(vi) the double coset formula

resHL trHK “
ÿ

aPLzH{K

trLLXaKa´1caresKa´1LaXK

holds for all subgroups K , L Ă H Ă G .

The double coset formula is an algebraic incarnation of the orbit decomposition
resHL H{K –

š

aPLzH{K L{pLX aKa´1q.
A morphism f : M Ñ N of Mackey functors is a family of group homomorphisms

f pHq : MpHq Ñ NpHq that preserve all restriction, transfer, and conjugation maps.
We write MackpG q for the category of all G -Mackey functors.

When G is trivial, a G -Mackey functor is the same thing as an abelian group, so
it makes sense to ask how ordinary algebraic notions equivariantize. To start, let’s
consider the integers Z. This is the free abelian group on a single generator. We
shall see that the free G -Mackey functor on a single generator (in the G -component)
is the Burnside Mackey functor A, described below. Recall that the Grothendieck
group or group completion of a commutative monoid M is the initial abelian group
receiving an additive map from M.

Example 1.2. For any subgroup H Ă G , let ApHq be the Grothendieck group of
the commutative monoid of isoclasses of finite H-sets, under disjoint union. Then
A is a Mackey functor. Its restrictions are induced by resHK : SetH Ñ SetK , its

transfers are induced by indH
K “ H ˆK p´q : SetK Ñ SetH , and its conjugations

are induced by gp´q : SetH Ñ SetgHg
´1

. When G is trivial, A – Z.

It will be convenient to repackage the data in Definition 1.1 as a certain kind of
functor. We start by describing a domain category that encodes axioms (i) – (vi).
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Definition 1.3. The Lindner category B`
G is defined as follows. An object of B`

G

is a finite G -set. A morphism from X to Y in B`
G is a span diagram X Ð U Ñ Y

of finite G -sets, modulo the equivalence relation that identifies X Ð U Ñ Y
with X Ð U 1 Ñ Y if there is an isomorphism U – U 1 that makes both triangles
commute. The composite of X Ð U Ñ Y and Y Ð V Ñ Z is represented by the
span X Ð W Ñ Z constructed by pulling back and composing.

X Y Z

U V

W

The hom sets of B`
G are commutative monoids. The sum of X Ð U Ñ Y and

X Ð V Ñ Y is represented by X Ð U \ V Ñ Y , and the class of X Ð ∅ Ñ Y
is the additive identity. The Burnside category BG is obtained from the Lindner
category B`

G by applying group completion homwise.

Remark 1.4. The category B`
G is also sometimes called the Burnside category, but

we shall reserve this name exclusively for BG .

Note that BG is an additive category, meaning it is enriched over the category
of abelian groups, and has all finitary biproducts. The empty set ∅ is the zero
object, and the disjoint union X \ Y is the product and coproduct of X and Y in
BG . Note also that the category BG is self-dual.

We now give a second definition of a Mackey functor. Let Ab denote the
category of abelian groups.

Definition 1.5. A G -Mackey functor M is a contravariant Ab-enriched functor
from the Burnside category BG to the category Ab of abelian groups.

Remark 1.6. We could just as well define Mackey functors to be covariant Ab-
enriched functors, because BG is self-dual. Note that a Mackey functor automati-
cally sends disjoint unions X \Y of finite G -sets to direct sums because it respects
composition and the additive enrichment.

Definitions 1.1 and 1.5 are equivalent. If M : Bop
G Ñ Ab is a Mackey functor

in the second sense, then we recover a Mackey functor in the first sense by setting

MpHq “ MpG{Hq

resHK “ MpG{K
id
ÐÝ G{K

π
ÝÑ G{Hq

trHK “ MpG{H
π
ÐÝ G{K

id
ÝÑ G{K q

cg “ MpG{gHg´1 id
ÐÝ G{gHg´1 p´qgÝÑ G{Hq

“ MpG{gHg´1 p´qg
´1

ÐÝ G{H
id
ÝÑ G{Hq.

The double coset formula arises from the pullback squares that define composition in
B`

G , and the values above determine M : Bop
G Ñ Ab by functoriality and additivity.
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Example 1.7. The representable Mackey functor BG p´, G{G q : Bop
G Ñ Ab is

isomorphic to A, because there is an equivalence SetG {pG{Hq » SetH that sends
a G -map p : X Ñ G{H to its fiber over eH. From here, the Yoneda lemma implies
that A is free on a generator in G{G . In general, the representable Mackey functor
BG p´,

š

iPI G{Hi q is free on the set of generators txi | i P I u, where xi is regarded
as an element in the G{Hi component.

The category MackpG q is an abelian category. Kernels and cokernels are com-
puted pointwise, and similarly for more general small limits and colimits. There is
also a tensor product of Mackey functors, given by Day convolution.

Definition 1.8. The box product M ˝N of two Mackey functors M, N : Bop
G Ñ Ab

is the left Kan extension of b ˝ pM ˆ Nq : Bop
G ˆBop

G Ñ Ab along the cartesian
product functor ˆ.

Bop
G ˆBop

G Abˆ Ab Ab

Bop
G

M ˆ N b

ˆ
M ˝ N “ Lanˆpb ˝M ˆ Nq

By definition, the box product has the following universal property

hompM ˝ N, Pq – hompb ˝ pM ˆ Nq, P ˝ ˆq,

and for any finite G -set X P BG , the coend formula implies

pM ˝ NqpX q –

ż pY ,ZqPBGˆBG

MpY q b NpZ q bBG pX , Y ˆ Z q.

The box product makes MackpG q into a closed symmetric monoidal category,
in which the Burnside Mackey functor A is the unit. The Mackey functor-valued
hom hompM, Nq is defined by an end dual to the coend for M ˝ N.

A (commutative) monoid with respect to the box product is called a (commu-
tative) Green functor. A Green functor R behaves like a ring to some extent, but
there is an asymmetry between its addition and multiplication. Every component
RpHq of a Green functor is a ring, but we are not guaranteed any multiplicative
transfer (norm) maps nH

K : RpK q Ñ RpHq. Roughly speaking, a Tambara functor
is a commutative Green functor equipped with multiplicative norms nH

K for all sub-
groups K Ă H Ă G , which satisfy the double coset formula and a distributive law
over the transfers. Blumberg and Hill’s incomplete Tambara functors [2] interpolate
between these two extremes.

For further introductions to Mackey functors, we recommend [11]2 and [12].

2This is also available online as arXiv:1405.1770.
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2 Equivariant stable homotopy groups

Mackey functors play the role of abelian groups in equivariant homotopy theory. Just
as the stable homotopy groups of spectra are abelian groups, the stable homotopy
groups of genuine G -spectra are Mackey functors. Moreover, Brun [3, §7.2] has
shown that π0 of a genuine commutative ring G -spectrum is a Tambara functor,
and Blumberg and Hill generalize this result to less structured ring spectra [2,
Theorem 1.6].

That being said, a wrinkle appears in the construction of transfer maps in equiv-
ariant homotopy theory. To see the problem, suppose that M is a G -module, and
consider the transfer trGe pxq “

ř

rPG rx : M Ñ MG once more. The element trGe pxq
is G -fixed because for any g P G , we have

g
ÿ

rPG

rx “
ÿ

rPG

grx “
ÿ

rPG

rx

by the strict G -equivariance and commutativity of addition in M. In equivariant ho-
motopy theory, is it standard to assume that G acts strictly, but it is completely un-
reasonable to assume that addition is strictly commutative. Nonequivariantly, every
connected, strictly commutative topological monoid splits as product of Eilenberg-
MacLane spaces.

Fortunately, we do not need a strictly G -equivariant and commutative sum to
construct transfers. Suppose x P M is an element, and regard it as an additive
map x : resGe ZrG{G s Ñ resGe M. Then there is an adjoint map of G -modules x :
ZrG{G s Ñ coindG

e resGe M, and there is an isomorphism coindG
e – indG

e . Composing
with the counit ε : indG

e resGe M Ñ M yields a G -map

ZrG{G s Ñ coindG
e resGe M – indG

e resGe M
ε
Ñ M

that represents trGe pxq P MG . We think of the composite

ΣG : coindG
e resGe M – indG

e resGe M Ñ M

as a G -fold twisted sum. Analogous maps naturally appear in homotopy commuta-
tive settings.

Suppose H Ă G is a subgroup. The restriction functor resGH : SpG
Ñ SpH has

left and right adjoints given by induction indG
H and coinduction coindG

H , and the
canonical G -map

indG
HX Ñ coindG

HX

is the Wirthmüller isomorphism. It is a equivalence of genuine G -spectra. If X is a
G -spectrum, then combining the counit ε : X ^G{H` – indG

H resGHX Ñ X with the

stable equivalence indG
H resGHX » coindG

H resGHX produces a G{H-fold twisted sum

ΣG{H : coindG
H resGHX » indG

H resGHX Ñ X .

These maps give rise to the transfers in the homotopy groups of X .
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Definition 2.1. Suppose X is a genuine G -spectrum and n P Z. The nth homotopy
groups of X form a Mackey functor whose H-component is

πH
n X “ rSn ^ G{H`, X sG .

By duality, there is an isomorphism rSn, X ^G{H`s
G – rSn^G{H`, X sG , and the

restrictions, transfers, and conjugations for πnX are defined by

resHK “ pid^ π`q
˚ : rSn ^ G{H`, X sG Ñ rSn ^ G{K`, X sG

trHK “ pid^ π`q˚ : rSn, X ^ G{K`s
G Ñ rSn, X ^ G{H`s

G

cg “ pid^ p´qg`q
˚ : rSn ^ G{H`, X sG Ñ rSn ^ G{gHg´1

` , X sG

“ pid^ p´qg´1
` q˚ : rSn, X ^ G{H`s

G Ñ rSn, X ^ G{gHg´1
` sG

for any subgroups K Ă H Ă G and group element g P G . In general, we let

πnX pT q “ rSn ^ T`, X sG – rSn, X ^ T`s
G

for any finite G -set T , and we define more general structure maps as above.

The duality isomorphism factors as a composite

rSn, X ^ G{H`s
G – rSn, coindG

H resGHX sG – rSn ^ G{H`, X sG

of the Wirthmüller isomorphism and the adjunction. Thus, the transfers on πnX are
induced by the twisted sums ΣG{H described earlier. As a special case of Definition
2.1, note that if E is a G -spectrum and X is a based G -space or a G -spectrum,
then the E -homology and E -cohomology groups of X

EG
˚ X “ πG

˚ pE ^ X q and E˚G X “ πG
´˚FG pX , E q

naturally extend to Mackey functors E˚pX q “ π˚pE^X q and E˚pX q “ π´˚FG pX , E q.

Example 2.2. The 0th stable homotopy groups π0pS
0q of the equivariant 0-sphere

are isomorphic to the Burnside Mackey functor A. Explicitly, for any subgroups
K Ă H Ă G , let χpH{K q denote the Euler characteristic

S0 coev
ÝÑ H{K` ^ DpH{K`q » DpH{K`q ^ H{K`

ev
ÝÑ S0

of H{K`, regarded as a class in πH
0 S0. Then χ induces an isomorphism of Mackey

functors A – π0S0 (cf. [6, V.2]). We may alternatively represent the map χpH{K q
as the composite

S0 η
ÝÑ coindH

K resHKS0 » indH
K resHKS0 ε

ÝÑ S0.

More generally, there is an isomorphism

BG pX , Y q – rΣ8`X , Σ8`Y sG

for any finite G -sets X and Y , which identifies BG with the full subcategory
xOrbG y Ă ho SpG spanned by suspensions of finite pointed G -sets [6, V.9]. For
this reason, BG is also called the stable orbit category. For any G -spectrum X and
integer n P Z, taking nth stable homotopy groups defines a functor r´, Σ´nX sG :
xOrbG y

op Ñ Ab. The isomorphism BG – xOrbG y ensures that we recover the
Mackey functor structure of Definition 2.1, and nothing more.
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3 Spectral Mackey functors

The previous section suggests that G -spectra are categorifications of Mackey func-
tors. We now present a theorem that gives substance to this idea.

Regard a Mackey functor as an additive functor M : Bop
G Ñ Ab from the Burn-

side category to the category of abelian groups (Definition 1.5). Every part of this
definition has a higher algebraic counterpart. The idea is to replace Ab with the
category Sp of nonequivariant spectra, and to enhance BG to a spectrally enriched
category BG ,sp that models the full, spectral subcategory of SpG spanned by sus-
pensions of finite pointed G -sets. We follow Guillou and May’s model categorical
treatment [4], where BG ,sp is denoted GA , but Barwick has proven a similar the-
orem using 8-categories [1]. An important antecedent to these results appears in
earlier work of Schwede and Shipley [9, Example 3.4.(i)]. They show that SpG is
equivalent to the category of spectral presheaves over the full subcategory of SpG

spanned by tΣ8`G{H |H Ă Gu. A related result for presentable stable 8-categories
is given in [7, Proposition 1.4.4.9].

Remark 3.1. The difference between [9] and the work in [1] and [4] is that the latter
papers construct the spectral Burnside category without reference to equivariant
homotopy theory. Barwick works over a natural 8-categorical lift of the Lindner
category B`

G , which he does not group complete. As we explain below, Guillou and
May work over a precise spectral analogue to BG , constructed by homotopy group
completing a 2-categorical lift of B`

G .

Recall that the Lindner 1-category B`
G has finite G -sets X , Y , Z , ... as objects,

and that a morphism from X to Y in B`
G is an isomorphism class of a span

X Ð U Ñ Y of finite G -sets. The first step in constructing BG ,sp is to remember
the isomorphisms

X Y

U

U 1

–

between different representatives of morphisms in B`
G . It will be technically conve-

nient to think of a span X Ð U Ñ Y as a single morphism U Ñ Y ˆ X , and to
consider G -actions on the finite sets ∅, t1u, t1, 2u, t1, 2, 3u, ... only. Among other
things, this cuts the proper class of finite G -sets down to a countable set, and it
makes the disjoint union and cartesian product of G -sets strictly associative and
unital. Henceforth, we understand all finite G -sets to be of this form.

Definition 3.2. For any finite G -set A, let GE pAq be the category of finite G -sets
and G -isomorphisms over A. This is a strictly associative and unital symmetric
monoidal category (also called a permutative category) under disjoint union.

Recall that a bicategory C is a category weakly enriched in 1-categories. More
explicitly, a bicategory consists of a class of objects ObpC q, hom 1-categories

7



C pX , Y q, composition functors ˝ : C pY , Z q ˆ C pX , Y q Ñ C pX , Z q, and iden-
tities id : ˚ Ñ C pX , X q such that the usual associative and unital laws hold up to
coherent natural isomorphism.

Definition 3.3. Let GE be the bicategory whose objects are finite G -sets, and
whose hom 1-categories are GE pX , Y q “ GE pY ˆ X q. Composition corresponds
to the pullback of spans, and the diagonal ∆ : X Ñ X ˆ X is the identity at X .

The bicategory GE is very nearly a strict 2-category. Composition is strictly
associative, and one of the unit laws holds strictly. We can make the other unit law
strict by “whiskering” on new identity elements. To be precise, if C is a 1-category
with basepoint c P C , then the whiskered category C 1 has:

(a) objects ObpC 1q “ ObpC q \ t˚u, and

(b) hom sets C 1px , yq “ C pεpxq, εpyqq, where ε : ObpC 1q Ñ ObpC q is the
identity map on ObpC q and sends ˚ to the basepoint c P C .

Compositions and identities in C 1 are inherited from C , and w “ idc P C 1p˚, cq
is a canonical “whisker isomorphism” between ˚ and c in C 1. Thus, the inclusion
C ãÑ C 1 is an equivalence of categories. We think of C 1 as a categorical analogue
to the whiskering X 1 “ X _ r0, 1s of a based space X , but we warn the reader that
the classifying space BpC 1q is not homeomorphic to pBC q1.

Definition 3.4. Let B`
G ,2 be the strict 2-category whose objects are finite G -sets

X , Y , Z , ... , and whose hom 1-categories are

B`
G ,2pX , Y q “

"

GE pX , X q1 if X “ Y and |X | ą 1
GE pX , Y q otherwise

.

Here we regard ∆ : X Ñ X ˆ X as the baspoint of GE pX , X q.

The 2-category B`
G ,2 is strictly associative and unital because the whisker iso-

morphisms provide room to “hang” the bicategorical unit isomorphisms of GE . We
refer the reader to [4, §5] for details, where B`

G ,2 is denoted GE 1.

The homs of B`
G ,2 are still permutative categories, and they should be thought of

as commutative monoids up to coherent homotopy. It remains to homotopy group
complete them. We can do considerably better. Given any permutative category C ,
there is a connective spectrum KC such that Ω8KC is a group completion of the
classifying space BC (cf. [10] and [8]). The basic idea in [10] is to construct the lev-
els of KC using a homotopical version of the iterated classifying space construction
for topological abelian groups, but nailing down the details is nontrivial. Moreover,
the classical versions of KC will not suffice for the problem at hand, because pro-
ducing an honest spectral category BG ,sp from B`

G ,2 requires a construction with
more precise multiplicative properties, and proving that spectral Mackey functors
over BG ,sp are equivalent to G -spectra requires even more compatibilities.

Guillou, May, Merling, and Osorno have developed an “equivariant infinite loop
space machine” KG with all of the necessary properties in [5] and subsequent work.
When G “ e, the machine K “ Ke
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1. sends a permutative category C to a connective spectrum KC whose 0-space
is the group completion of BC , and

2. sends multilinear maps between permutative categories to multilinear maps
between spectra.

Thus, applying K to the hom categories of B`
G ,2 produces a spectral category.

Definition 3.5. Let BG ,sp be the spectral category whose objects are finite G -
sets X , Y , Z , ... , and whose hom spectra are BG ,sppX , Y q “ KpB`

G ,2pX , Y qq. A
spectral Mackey functor is a contravariant spectral functor from BG ,sp to Sp. We
write MacksppG q for the category of spectral Mackey functors for G .

Using further properties of KG , Guillou and May prove that the homotopy theory
of spectral G -Mackey functors and the homotopy theory of G -spectra are equivalent.

Theorem 3.6 ([4, Theorem 0.1]). There is a zig-zag of Quillen equivalences con-
necting MacksppG q to the category SpG of orthogonal G -spectra.

We briefly indicate some ingredients in the proof. Just as the orbits G{H gen-
erate the homotopy theory of TopG , the suspension spectra Σ8`G{H generate the

homotopy theory of SpG . Let GD denote the full, spectral subcategory of SpG

spanned by (bifibrant approximations of) the suspension spectra of finite pointed
G -sets. Then the category of spectral contravariant functors from GD to Sp is
Quillen equivalent to SpG . This is essentially Schwede and Shipley’s theorem [9].
The rest of the proof boils down to showing that GD is suitably equivalent to the
spectral category BG ,sp.

By a non-group complete version of the tom Dieck splitting, the category
B`

G ,2pX , Y q is a model for the G -fixed points of PG pY ˆ X q`, the free G -E8
algebra on the based G -set pY ˆX q`. Therefore BG ,sppX , Y q » KpPG pY ˆX qG`q,
and compatibility relations between K and KG imply that KpPG pY ˆ X qG`q »
KG pPG pY ˆ X q`q

G . From here, the equivariant Barratt-Priddy-Quillen theorem
gives KG pPG pY ˆ X q`q

G » pΣ8` pY ˆ X qqG , and by duality,

pΣ8` pY ˆ X qqG – pΣ8`Y ^ Σ8`X qG » FG pΣ
8
`X , Σ8`Y qG » FG pΣ8`X , Σ8`Y q.

Therefore BG ,sppX , Y q » GDpΣ8`X , Σ8`Y q.
Ignoring (co)fibrancy issues, the rest of the proof boils down to checking that

these equivalences define an equivalence BG ,sp » GD of spectral categories, and
that they induce an equivalence FunpBop

G ,sp, Spq » FunpGDop, Spq on the level of
homotopy theories.

Example 3.7. For any finite G -set X , the representable spectral Mackey functor
BG ,spp´, X q P MacksppG q and the suspension G -spectrum Σ8`X P SpG correspond
under the equivalences of Theorem 3.6 (cf. [4, §2.5]). In particular, BG ,spp´, G{G q
correponds to the sphere G -spectrum.
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