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1 ROpG q-Graded Cohomology

Definition 1.1. Let A be a coefficient system. Then, we say H̃˚G p´,Aq extends to
an ROpG q-graded theory if there exist functors

H̃V
G : hGTopop

˚ Ñ Ab

(where V is a finite dimensional subspace of U) together with isomorphisms

H̃V
G pX ;Aq – H̃V‘W

G pΣW X ;Aq

satisfying the following:

• If V is the n-dimensional trivial representation, H̃V
G p´,Aq agrees with degree-

n Bredon cohomology.

• For each representation V , H̃V
G satisfies the additivity, weak equivalence and

exactness axioms.

Theorem 1.2 (Lewis-May-McClure, 1981). Let A be a coefficient system, and
H˚G p´,Aq be the associated (Z-graded) Bredon cohomology theory. Then, H˚G p´,Aq
extends to an ROpG q-graded theory if and only if A extends to a Mackey functor.

We have Brown’s representability theorems in the equivariant setting:

Theorem 1.3. If U is a complete G-universe, then an ROpG q-graded cohomology
theory on based G -spaces or on G -spectra is representable.

Theorem 1.4. A Z-graded cohomology theory on G -spectra indexed on U is repre-
sented by a G-spectrum indexed on U and therefore extends to an ROpG q-graded
cohomology theory on G -spectra indexed on U.

Remark 1.5. By previous talks we have two models for G -spectra. Therefore we
have two interpretations of this theorem.

Theorem 1.6. For a Mackey functor M, there is an Eilenberg-MacLane spectrum
HM such that π0pHMq “ M and πnpHMq “ 0 if n ‰ 0. It is unique up to
isomorphism in h̄GTop˚. For Mackey functors M and M1, rHM, HM1sG is the
group of maps of Mackey functors MÑM1.
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Proof. To get HM first we Mimic Bredon’s construction of ordinary Z-graded co-
homology, but in the category of G -spectra, using Mackey functors instead of co-
efficient systems. We apply Brown’s representability theorem to get HW such that

HV
G pX ;Mq – rX , Σ´V HMsG .

Then HM is the required Eilenberg-MacLane G -spectrum.

2 Conner conjecture

Theorem 2.1 (Conner conjecture). Let G be a compact Lie group, and let X have
the homotopy type of a finite dimensional G -CW complex with finitely many orbit
types. A is an Abelian group. Then,

H̃˚pX ; Aq “ 0 ùñ H̃˚pX {G ; Aq “ 0.

Remark 2.2. If H Ÿ G , then X {G – pX {Hq{pG{Hq.

We need the Oliver transfer map to prove the theorem.

Theorem 2.3 (Oliver Transfer). Let π : X {H Ñ X {K be the projection map
induced by the map on orbits G{H Ñ G{K . This induces a map on cohomology:

π˚ : H̃˚pX {K ; Aq Ñ H̃˚pX {H; Aq.

There is a transfer map τ : H̃˚pX {H; Aq Ñ H̃pX {K ; Aq such that τ ˝ π˚ is multi-
plication by the Euler characteristic χpK{Hq.

Proof. We can embed M “ K{H into a large G -rep V . Let ν be the normal bundle.
We have the following maps

t : SV Ñ Tν Ñ T pτM ‘ νq – M` ^ SV

It is known that the composite of t and the collapsing map M` ^ SV Ñ SV is the
Euler characteristic χpK{Hq.

Note that

H̃npX {H; Aq – H̃n
HpX ; Aq – H̃n

K pX ^ K{H`; Aq – H̃n`V
K pX ^ ΣV K{H`; Aq

H̃npX {K ; Aq – H̃n
K pX ; Aq – H̃n`V

K pΣV X ; Aq – H̃n`V
K pX ^ SV ; Aq

Smashing with X , t induces τ .

Using Smith theory, we will first prove the Conner conjecture when G is a finite
group. If G “ S1, we will use the finite case to reduce to the case where the action
of G is the free away from the basepoint, and apply a localization result. Then, by
the observation, we will have proved the conjecture whenever G can be written as
a finite group extension of a torus.

Lemma 2.4. If G is finite, the statement of the Conner conjecture holds.
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Proof. First, we assume G is a p-group and A “ Fp.
By Theorem 2.5 in my previous talk, if X is acyclic, then

ÿ

q

HqpXG q ď
ÿ

q

dim HqpX q “ 1

χpXG q ” χpX q “ 1 mod p

So XG is acyclic. Using the inequality of Betti numbers in the proof of Theorem
2.5 (previous talk) we have

cq ` iq ` 2
r

ÿ

i“q

bi ď 2
r

ÿ

i“q

ai

where r is sufficiently large that higher degree cohomology is trivial. With q ą 0,
we have

řr
i“q bi “

řr
i“q ai “ 0 so cq ` iq “ 0 ùñ cq “ 0; if q “ 0 we have

řq
i“0 bi “

řr
i“0 ai “ 1 so c0 ` i0 “ 0 ùñ c0 “ 0. Thus pX {XG q{G is acyclic.

This is enough to show that X {G is acyclic as well because we have the following
cofiber sequence:

XG ãÑ X {G Ñ pX {XG q{G .

Now, let G be an arbitrary finite group and still A “ Fp. Let P be a p-Sylow
subgroup of G . There is a covering map p : X {P Ñ X {G . Using the Oliver transfer
map τ , we have the following composition:

H̃˚pX {G ; Aq
p˚

ÝÝÑ H̃˚pX {P; Aq
τ
ÝÑ H̃˚pX {G ; Aq

This composition is multiplication by |G{P|, which is an isomorphism since it is
prime to p. But H̃˚pX {P; Aq “ 0 by the above. So H̃˚pX {G ; Aq “ 0.

Next, let A “ Q. We have the composition:

H̃˚pX {G ; Aq
p˚

ÝÝÑ H̃˚pX ; Aq
τ
ÝÑ H̃˚pX {G ; Aq

This composition is multiplication by |G |, which is an isomorphism, so H̃˚pX {G ; Aq “
0.

Finally by the universal coefficient theorem we can extend to arbitrary coeffi-
cients.

Lemma 2.5. If G “ S1, the statement of the Conner conjecture holds.

Proof. All proper subgroups of G are cyclic. Thus, by the finite orbit type hy-
pothesis, there is a large cyclic group C such that C contains all proper stabilizers.
Hence X {C is G{C -semifree and acyclic by the previous lemma. We may assume
X is a semi-free G -complex. Considering the Cp-subgroup action on X , we have
that XG “ XCp , so by Smith theory XG is Fp-acyclic.

To see that XG is Q-acyclic, we cite a version of Smith theory from [3]:
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Lemma 2.6. Let X be a semi-free finite dimensional S1-CW complex. Then, for
i “ 0, 1:

ÿ

q”i mod 2

dim HqpXG ;Qq ď
ÿ

q”i mod 2

dim HqpX ;Qq

Now we have that both X and XG are acyclic, we can use Vietoris mapping
theorem and Serre sequence of the following diagram:

XG //

��

X

��
pEG ˆ XG q{G

φ //

��

pEG ˆ X q{G

��
BG BG

to get
H˚pX {G , XG q – H˚ppEG ˆ X q{G , pEG ˆ XG q{G q “ 0

Hence X {G is acyclic.

Corollary 2.7. If G is a finite extension of a torus, the statement of the Conner
conjecture holds.

Lemma 2.8. Let G be a connected compact Lie group, and T be a maximal torus
in G . Then the Euler characteristic χpG{NG pT qq “ 1.

Now we can prove the Conner conjecture:

Proof of Theorem 2.1. Let G0 be the component of the identity in G ; this is a
normal subgroup since conjugation is a continuous map fixing the identity. Let T
be the maximal torus of G0 and N be its normalizer. We know that N{T is finite.
By Corollary 2.7, H̃˚pX {N; Aq “ 0. We have the composition

H̃˚pX {G0; Aq
π˚

ÝÝÑ H̃˚pX {N; Aq
τ
ÝÑ H̃˚pX {G0; Aq

where τ is the Oliver transfer. By Lemma 2.8, this composition is the identity, so we
have H̃˚pX {G0; Aq “ 0. Since G is a finite extension of G0, we have H̃˚pX {G ; Aq “
0.
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