Equivariant K-theory

Ningchuan Zhang
August 16, 2019

1 Classical Equivariant K-theory

1.1 Equivariant vector bundles

Definition 1.1. Let G be a compact Lie group and X be a G-manifold. A G-vector
bundle over X is a G-map £ : E — X which is a vector bundle such that G acts
linearly on the fibers, i.e. g: Ex — Eg is linear for all g € G and x € X.

If X is a compact space, Kg(X) is defined to the Grothendieck group of finite
dimensional complex G-vector bundles over X. Tensor product of G-vector bundle
makes K¢ (X) into a ring.

Example 1.2. K;(pt) >~ R(G) is the representation ring of G.

A G-bundle is trivial if it is trivial as a vector bundle. By Peter-Weyl Theo-
rem, any G-vector bundle over X is a summand of a trivial G-bundle. K¢g(X) :=
Coker(Kg(pt) — K (X)) is the stable isomorphism classes of G-bundles over X.

Proposition 1.3. If X is G-free, then Kg(X) ~ K(X/G). If G acts trivially on X,
then Kg(X) ~ R(G) ® K(X).

Let i : H — G be an inclusion of a subgroup. For a G-space X, there is a
restriction map i* : Kg(X) — Kn(X). On the other hand, if H is of finite index in
G, there is a transfer map induced by the induction of representations iy : Ky (X) —
Kg(X). When H is of infinite index in G, this may lead to vector bundles of infinite
dimensions. In this case, one may hope to use three other constructions: smooth
induction, holomorphic transfer and dimension-shifting transfer for RO(G)-graded
theories. N

For a locally compact space X, define Kg(X) := Kg(X5).

Theorem 1.4 (Thom isomorphism). For vector bundles E over a locally compact
space X, there is a natural Thom isomorphism:

¢ Ke(X) — Ke(E).

Reducing to the case when X is a point and E = V for some V € R(G). Define
A V) € R(G) to be

A(V) =1- V—|—A2V— e+ (_1)dimV/\dim\/V-



Let ey : SO - SV be the based map sending the non-basepoint to 0 and let
by = ¢(1) e K(SY).

Theorem 1.5 (Equivariant Bott periodicity). For a compact G-space X and a
complex G-representation V, multiplication by by specifies a an isomorphism

b Ke(Xy) = Ke(X) =5 Kg(V x X) = Kg(SY A X4).
Moreover, e (by) = A(V).

The proof of the Thom isomorphism for line bundles can be proved using clutch-
ing functions as in the non-equivariant case. This implies the theorem for G abelian
since every G-representation is a direction sum of one-dimensional representations.
The proof of the G = U(n) case needs holomorphic transfer. For KOg, the Bott
periodicity theorem holds for spin representations whose dimension is divisible by 8.
The proof needs pseudo-differential operators.

Now we can extend Kg(—) to a reduced cohomology theory by setting in degree
zero KQ(X;) = Kg(X) for finite G-CW complexes X and K2(X) = Ks(X) for
based finite G-CW complexes X. Bott periodicity implies we may take:

K2 (X) := K&(X) and K2"T1(X) := K2(Z'X) for all n.

Let | = I(G) = ker(dim : R(G) — Z) be the augmentation. For G-space X,
there is a free G-map m: EG. Arg X — X.

Theorem 1.6 (The Atiyah-Segal completion theorem). [EHCT, XIV.5] The map
™ KE(X) = KE(EGy Ag X) is the completion at the augmentation ideal. In
particular, K2(EGy) ~ R(G);' and KL(EG,) = 0.

Remark 1.7. Recall that for any based space X, X"® = map(EG,, X)®. In this
sense, the Borel equivariant K-theory K&(EG, A —) corresponds to the homotopy
fixed points and KZ(—) corresponds to fixed points.

1.2 Atiyah’s KR-theory

Definition 1.8. A space with involution is a space X with a homeomoprhism 7 :
X — X of period 2. 7(x) is also written as X. A point x € X is a real point if
x = X. The subspace of X fixed by 7 is denoted by Xg.

A real vector bundle over a real space X is a complex vector bundle ¢ : E — X
such that

1. E is a real space.
2. & is Z/2-equivariant.
3. The map E;, — Ex is complex anti-linear.

The Grothendieck groups of the real vector bundles over a real space X is denoted
by KR(X).



Remark 1.9. A real vector bundle is different from a Z/2-vector bundle. The map
E, — Ex is complex-linear for the latter.

Proposition 1.10. Let X be a real space with X = Xg, then there is a natural
equivalence between the category of real vector bundles over X as space and the
category of real vector bundles over X as real space. The equivalence maps a vector
bundle E to E ®g C. As a result, KR(X) ~ KO(X).

We are now going to extend KR into an RO(Z/2)-graded theory. Denote by R
the real space with trivial involution and /R the real space with involution ix — —ix.
We use the following notation:

RP9 .= RI@® RO, BP9 .= unit ball in R?9, SP9 .= unit sphere in RP9,

Notice that RP? ~ CP as real spaces and $”'9 has dimension p+ g — 1. Define KR
to be kernel of restriction to the base point and set KR(X,Y) := KR(X/Y). Now

define
KRPI(X,Y) = KR(X x BP9, X x SP9 0 Y x BP9).

Then the usual suspension are given by KR~9 = KR%9. The KR-periodicity is
described as follows. Let

b =[H] — 1€ KRY(pt) = KR(B'!, S*1) = KR(CP'),
where H is the tautological line bundle over CP*.

Theorem 1.11 (KR-periodicity). 8 : KRP9(X,Y) —> KRPTLItL(X V), x > b-x
is an isomorphism.

Remark 1.12. The KR-periodicity is related to a similar periodicity of representa-
tions of Clifford algebras: Mx(R) ® Clp g ~ Clpi1,q+1

We can recover the Bott periodicity for K and KO from the KR-periodicity.
Proposition 1.13. There are natural isomorphisms:
KR(S¥2 x X) ~ KR(S™ x X) ~ K(X),
KR(S** x X) ~ KR(5*% x X) ~ KSC(X),
KR(5*8 x X) ~ KR(5*° x X)

KSC is the self-conjugate K-theory.

2 Global Equivariant K-theory Spectra

2.1 Borel equivariant theories from non-equivariant spectra

Let E be a non-equivariant generalized cohomology theory. We obtain a global

functor:
E(G) := E°(BG).



The contravariant functoriality of E in G follows from the functoriality of classifying
spaces. The transfer map for inclusions of subgroups H = G is the Becker-Gottlieb
transfer tr : X BG — Y BH. More generally, for a compact Lie group G and a
cofibrant G-space X, we have the Borel equivariant cohomology theory represented
by E: E*(EG x ¢ X). These Borel cohomology theories are represented by a global
homotopy type.

Construction 2.1. [GHT| 4.5.21] Given an orthogonal spectrum E, we define a
new orthogonal spectrum bE by setting

(bE)(V) = Map(L(V,R¥), E(V)),
for an inner product space V. O(V) acts on bE(V) by conjugation. The structure
maps oy, are defined by the composites
SV A Map(L(W,R®), E(W)) 2=, Map(L(W,R®), SV A E(W))

Map(resw,aﬁw)
—

Map(L(V @ W,R%), E(V @ W)),

where resyy 1 L(V @ W,R*®) — L(W,R®) is the restriction of isometric embed-
dings. The structure maps are functorially given by
O(V, W) A Map(L(V,R*®), E(V)) — Map(L(W,R%), E(W))
(w, @) A fr—{p > E(w, 0)(f(¢ 0 9))}

The endofunctor b on orthogonal spectra comes a natural transformation ig :
E — bE that send s a points x € E(V) to the constant map L(V,R*) — E(V)
with value x. This morphism is a non-equivariant level equivalence as L(V,R%) is
contractible.

We endow the functor b with a lax symmetric monoidal transformation

weF: bE A bBF— b(E A F).

LLE F is constructed using the universal property of the smash product. It suffices
to define the O(V) x O(W)-equivariant maps that constitute a bimorphism from
(bF, bE) to b(E A F):

Map(L(V,R%), E(V)) A Map(L(W,R®), F(W))
~“5>Map(L(V,R%) x L(W,R%®), E(V) A F(W))
maplresv.w V) \an(L(V ® W, R®), (E A F)(V @ W)),
where resy v : L(V@® W, R*) — L(V,R®) x L(W,R*) maps the embedding of
V ® W to its restriction to V and W.
2.2 Connective global K-theory

Definition 2.2. Let I' be the category whose objects are based finite sets n, =
{0,- -, n} with base point 0 and whose morphisms are based maps. A T-space is
a functor from I to the category of based spaces that is reduced, i.e. the value at
04 is a one-point space.



Construction 2.3. Let U/ be a complex vector space of countable dimension,
equipped with a hermitian inner product. For a finite based set A, let C(U, A) be the
space of tuples (E,), indexed by non-base point elements of A of finite-dimensional,
pairwise orthogonal C-subspaces of Y. The topology on C(C,A) < [],Gr(Uf) is
the subspace topology. The base point of C(U, A) is the tuple with E, = 0 for all
a. A based map a : A — B induces a map C(U,A) — C(U, B) sending (E,) to

(Fp), where
Fo= @ E.
a(a)=b
Then C(U) is a M-space whose underlying space is
cW, 1) =[G W)
n>0

Every -space can be evaluated on a based space by the coend construction. Write
C(U,K) = C(U)(K). Elements of C(U, K) are represented by an unordered tuple:

[E1, - Eniki, -+ kn)
where (E, - -+, E,) is an n-tuple of finite-dimensional, pairwise orthogonal subspaces
of U and ky,--- , k, are points of K.

Definition 2.4. A C*-algebra A is a Banach algebra over C with a map x — x*
for x € A such that

*

e (—)* is an involution, i.e (x*)* = x.

o (x+y)=x"+y*and (xy)* = y*x*.
e For A\eC, (Ax)* = Ax*.

o oot = lx]llx

|

A bounded linear map f : A — B of C*-algebras is a x-homomorphism if f(xy) =
f(x)f(y) and f(x*) = (f(x)*). f is called *-isomomorphism if it is bijective. In
that case, say A and B are isomorphic.

Remark 2.5. When K is a finite based discrete space, C(U, K) agrees with the
original definition. When K is compact, we have

CU,K) ~ chcygilr;rrc/<oo C*(Go(K), Endc(V)),
where Co(K) is the C*-algebra of continuous C-valued functions on K that vanish
at the base point.

Remark 2.6. C(U,S') ~ U(U), the group of unitary isometries on U that is
identity on the orthogonal complement of some finite dimensional subspace of i.

The symmetric power of a vector space V is defined to be Sym”"(V) = V&"/% .
Write Sym(V) = ,>,Sym”"(V). This is the free commutative C-algebra gener-
ated by V. As C-algebras, Sym(V) ® Sym(W) ~ Sym(V & W).



Lemma 2.7. If V has a Hermitian inner product, then there is a preferred inner
product on Sym"(V), making Sym(V) ® Sym(W) ~ Sym(V @ W) an isometry.

Construction 2.8. [GHT], 6.3.9] We define the connective global K-theory spec-

trum ku by setting
ku(V) = C (Sym(V¢), SY),

where V is an Euclidean inner product space, V¢ is its complexification with the
induced Hermitian inner product. The action of O(V) on V extends to a unitary
action on Sym(V¢). O(V) then acts on C(Sym(V¢), SY) diagonally.
To define the ring spectrum structure on ku, first notice for based spaces K and
L, there is a continous multiplication map:
CUK)ACVL)— CURV, KAL)
[Eii ki] A [Fji [j] — [Ei ® Fji ki A ]
These multiplication maps are associative and commutative. Now define a an
(O(V) x O(W))-equivariant multiplication map
pv.w : ku(V) A ku(W) = C (Sym(Ve), SY) A C (Sym(We), SY)
— C (Sym(Ve) ® Sym(We), SY A SY)
~ C (Sym((V@® W)c), SVEY) = ku(V @ W).

The maps py,w are associative and commutative. The O(V/)-equivariant unit map
is given by

w:SY —C (Sym(V(c),SV) =ku(V), v~ [C-1;v],

where C -1 := Sym®(V¢).

Construction 2.9 (Complex conjugation on ku). As Sym(V¢) ~ C ®g Symg(V),
Sym(Vc) has an involution tsym(v), inducing the complex conjugation on ku:

Yy = C(Ysym(v), SY)  ku(V) — ku(V).

Construction 2.10. Analogously, one can define the connective real global K-

theory by setting
ko(V) = Ge(Sym(V), SY),

where Cg(U) is the T-space of tuples of pairwise orthogonal, finite-dimensional real
subspaces of U.

Proposition 2.11. [GHT, Proposition 6.3.17] The orthogonal spectra ku and ko
are globally connective.



2.3 Periodic global K-theory

Construction 2.12 (The C*-algebra s). A graded C*-algebra is a C*-algebra A
equipped with a x-automorphism a : A — A such that o = id. The +1-eigenspaces
of « give a Z/2-grading on A:

Acen ={a€ Al a(a) =a} and Agya={aeA|a(a)=—a}.

The conjugation of A preserves this grading.
Let s be the C*-algebra of complex valued continuous functions on R vanishing
at c0. The involution on s is given by

The even and odd parts of s under this involution coincide with the usual definition
of even and odd functions.

Construction 2.13 (Complex Clifford algebras). Let V be a Euclidean inner product
space. Define the complex Clifford algebra C4(V) to be

CUV) = (TV)c/(vev —|v[*-1),

where TV = @D, V®" is the free tensor algebra on V. The original space V
embeds into the degree 1 part of TV and thus the odd part of C¢(V). This
construction is functorial for R-linear isometric embedding, so the action of O(V)
on V naturally extends to C¢(V).

CL(V) is a Z/2-graded O(V)-C*-algebra. The involution on C¢(V) is defined
by setting [v]* = [v] for v € V < C/(V) and extending this to a C-semilinear
anti-automorphism. The norm on C¢(V) is a restriction of operator norms via an
embedding C4(V) — Endc(A*(V¢)). This embedding is an extension of V —
Endc(A*(Ve)) by the universal property of C4(V).

The C/{ functor is monoidal, i.e there is an isomorphism of graded C-algebras

where ® is the graded tensor product.

Construction 2.14 (Periodic global K-theory). [GHT] 6.4.9] Let V be a Euclidean
inner product space. Sym(V() inherits a Hermtian inner product and an O(V)-
action by C-linear isometries. Sym(V() is infinite dimensional (unless V = 0) but
not complete. Denote by Hy the Hilbert space completion of Sym(V¢). The action
O(V) extends to Hy, making it a complex Hilbert space representation of O(V).
Denote by Ky the C*-algebra of compact operators on Hy. Now define the periodic
global K-theory KU by setting

KU(V) = G (s,CL(V) ®Ky).

Here, we consider Ky as evenly graded, so the grading of C£(V)®Ky is entirely from
CL(V). The topology of KU(V) comes from the pointwise convergence topology
in the operator norm of Ky and the base point is the zero *-homomorphism.



The continuous action of O(V) on Hy induces an O(V)-action on Ky by
conjugation. Together with the O(V)-action on C{(V), it gives an O(V)-action
on KU(V).

The multiplication on KU is defined as follows. First there is isomorphism of
C*-algebras

Kv®Kw ~ Kvgw,

where & is the complete tensor product. From this we obtain an isomorphism of
graded C*-algebras:

(CUV)RKy)R(CUW) R Kw) ~ (CUV) @ CUW)) ® (Ky&Kw)
~ (Cg(\/ @ W) ®’C\/@W.

Now define the multiplication map py,w : KU(V) A KU(W) - KU(V @ W) as
the composite:

Cg*r(s,Cé(V) ®Kv) A Cg*,(s, CLW)®Kw) 8, Cg*r(s®s, (Cev) ®ICV)®((C£(W) R®Kw))
A* ~

25 CL(s, (CHV) @ Kv)B(CUW) @ Kw))
SEAN Cg*r(s, (CE(V ® W) ® ICV@W).

These multiplication maps are associative and commutative. To describe the unit
map of this multiplication, we need to define the "functional calculus” map:

fo: SV — (s, CUV) @ Ky), v > (—)[v],
where for f € s

fvD . [v]  when f is odd and v # 0;
0 when f is odd and v = 0.

{ f(lv])-1, when f is even;

Define the unit map ny : SY — C}(s, C{(V) ® Kv) by

SV ¢(s. vy @ koy) L2, o (5, Co(V) @ Ky) = KU(V),
where pg € Ky is the projection of the symmetric algebra onto its 0-th summand.

Construction 2.15. We now describe a ring spectrum map j : ku — KU. For each
inner product space V, we need to define

J(V) tku(V) = C (Sym(V¢), SY) — C(s,CUV) @ Ky) = KU(V).
For a configuration

[Ey,--+  Eniva, o va]€C (Sym(V@),Sv) ,



we define the associated *-homomorphism to be

JV[EL, - Epyvi, -+, vp] s — CUV)RKy

f —> Z f[v,-] ® pE/.,

i=1

where f[v;] = fc(v;)(f) and pg denotes the orthogonal projection onto a subspace E.
One can check j(V)[Ex; vk] is Z/2-graded. Furthermore, j(V) is O(V)-equivariant,
multiplicative and unital. Thus the maps j(V) indeed form a morphism of ultra-
commutative ring spectra.

We now describe the equivariant Bott periodicity for KU. Let G be a compact
Lie group, and V an orthogonal G-representation. Denote by Co(V,Cl(V)) the
G-C*-algebra of continuous C/¢(V)-valued functions on V that vanish at infinity.
Functional calculus provides a distinguished graded *-homomorphism:

By :s — G(V,CL(V)), Bv(f)(v)=Ff[v]

As the functional calculus map is G-equivariant, Sy is invariant under the conju-
gation action of G on Go(V,Cl(V)). Let H¢ be any complete G-Hilbert space
universe and K¢ be the G-C*-algebra of (not necessarily equivariant) compact op-
erators on H¢, with G acting by conjugation.

Theorem 2.16 (Equivariant Bott Periodicity). [GHT, Theorem 6.4.17] For every
G-C*-algebra A, the map

By —: Ca(s, AQKg) — Cg(s, G(V,CUV)) ® AR Kg)
is a G-weak equivalence.

Construction 2.17. We define global connective K-theory ku®. This will NOT
be a connective equivariant theory as the homotopy groups 7¢ (ku®) do not vanish
in negative degrees if G is non-trivial. This is a "globalization” of the connective
equivariant K-theory in [Gr]. ku® is the homotopy pullback of the following diagram:

ku® — b(ku)

l ’ lb(")

KU —Y p(KU)
Here, b(—) is the Borel construction in[2.1]that comes with an endofunctor i : id —
b, and j : ku — KU is the spectrum map constructed in [2.15]
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