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1 Classical Equivariant K -theory

1.1 Equivariant vector bundles

Definition 1.1. Let G be a compact Lie group and X be a G -manifold. A G -vector
bundle over X is a G -map ξ : E Ñ X which is a vector bundle such that G acts
linearly on the fibers, i.e. g : Ex Ñ Egx is linear for all g P G and x P X .

If X is a compact space, KG pX q is defined to the Grothendieck group of finite
dimensional complex G -vector bundles over X . Tensor product of G -vector bundle
makes KG pX q into a ring.

Example 1.2. KG pptq » RpG q is the representation ring of G .

A G -bundle is trivial if it is trivial as a vector bundle. By Peter-Weyl Theo-
rem, any G -vector bundle over X is a summand of a trivial G -bundle. rKG pX q :“
CokerpKG pptq Ñ KG pX qq is the stable isomorphism classes of G -bundles over X .

Proposition 1.3. If X is G-free, then KG pX q » K pX {G q. If G acts trivially on X ,
then KG pX q » RpG q b K pX q.

Let i : H ãÑ G be an inclusion of a subgroup. For a G -space X , there is a
restriction map i˚ : KG pX q Ñ KHpX q. On the other hand, if H is of finite index in
G , there is a transfer map induced by the induction of representations i˚ : KHpX q Ñ
KG pX q. When H is of infinite index in G , this may lead to vector bundles of infinite
dimensions. In this case, one may hope to use three other constructions: smooth
induction, holomorphic transfer and dimension-shifting transfer for ROpG q-graded
theories.

For a locally compact space X , define KG pX q :“ rKG pX`q.

Theorem 1.4 (Thom isomorphism). For vector bundles E over a locally compact
space X , there is a natural Thom isomorphism:

φ : KG pX q
„
ÝÑ KG pE q.

Reducing to the case when X is a point and E “ V for some V P RpG q. Define
λpV q P RpG q to be

λpV q “ 1´ V ` Λ2V ´ ¨ ¨ ¨ ` p´1qdim V Λdim V V .
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Let eV : S0 Ñ SV be the based map sending the non-basepoint to 0 and let
bV “ φp1q P rK pSV q.

Theorem 1.5 (Equivariant Bott periodicity). For a compact G -space X and a
complex G -representation V , multiplication by bV specifies a an isomorphism

φ : rKG pX`q “ KG pX q
„
ÝÑ KG pV ˆ X q “ rKG pS

V ^ X`q.

Moreover, e˚V pbV q “ λpV q.

The proof of the Thom isomorphism for line bundles can be proved using clutch-
ing functions as in the non-equivariant case. This implies the theorem for G abelian
since every G -representation is a direction sum of one-dimensional representations.
The proof of the G “ Upnq case needs holomorphic transfer. For KOG , the Bott
periodicity theorem holds for spin representations whose dimension is divisible by 8.
The proof needs pseudo-differential operators.

Now we can extend KG p´q to a reduced cohomology theory by setting in degree

zero K 0
G pX`q “ KG pX q for finite G -CW complexes X and K 0

G pX q “
rKG pX q for

based finite G -CW complexes X . Bott periodicity implies we may take:

K 2n
G pX q :“ K 0

G pX q and K 2n`1
G pX q :“ K 0

G pΣ
1X q for all n.

Let I “ I pG q “ kerpdim : RpG q Ñ Zq be the augmentation. For G -space X ,
there is a free G -map π : EG` ^G X Ñ X .

Theorem 1.6 (The Atiyah-Segal completion theorem). [EHCT, XIV.5] The map
π˚ : K˚G pX q Ñ K˚G pEG` ^G X q is the completion at the augmentation ideal. In
particular, K 0

G pEG`q » RpG q^I and K 1
G pEG`q “ 0.

Remark 1.7. Recall that for any based space X , X hG “ mappEG`, X qG . In this
sense, the Borel equivariant K -theory K˚G pEG` ^´q corresponds to the homotopy
fixed points and K˚G p´q corresponds to fixed points.

1.2 Atiyah’s KR-theory

Definition 1.8. A space with involution is a space X with a homeomoprhism τ :
X Ñ X of period 2. τpxq is also written as x . A point x P X is a real point if
x “ x . The subspace of X fixed by τ is denoted by XR.

A real vector bundle over a real space X is a complex vector bundle ξ : E Ñ X
such that

1. E is a real space.

2. ξ is Z{2-equivariant.

3. The map Ex Ñ Ex is complex anti-linear.

The Grothendieck groups of the real vector bundles over a real space X is denoted
by KRpX q.
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Remark 1.9. A real vector bundle is different from a Z{2-vector bundle. The map
Ex Ñ Ex is complex-linear for the latter.

Proposition 1.10. Let X be a real space with X “ XR, then there is a natural
equivalence between the category of real vector bundles over X as space and the
category of real vector bundles over X as real space. The equivalence maps a vector
bundle E to E bR C. As a result, KRpX q » KOpX q.

We are now going to extend KR into an ROpZ{2q-graded theory. Denote by R
the real space with trivial involution and iR the real space with involution ix Ñ ´ix .
We use the following notation:

Rp,q :“ Rq ‘ iR‘p, Bp,q :“ unit ball in Rp,q, Sp,q :“ unit sphere in Rp,q.

Notice that Rp,p » Cp as real spaces and Sp,q has dimension p` q´ 1. Define ĂKR

to be kernel of restriction to the base point and set KRpX , Y q :“ ĂKRpX {Y q. Now
define

KRp,qpX , Y q :“ KRpX ˆ Bp,q, X ˆ Sp,q Y Y ˆ Bp,qq.

Then the usual suspension are given by KR´q “ KR0,q. The KR-periodicity is
described as follows. Let

b “ rHs ´ 1 P KR1,1pptq “ KRpB1,1, S1,1q “ KRpCP1
q,

where H is the tautological line bundle over CP1.

Theorem 1.11 (KR-periodicity). β : KRp,qpX , Y q
„
ÝÑ KRp`1,q`1pX , Y q, x ÞÑ b¨x

is an isomorphism.

Remark 1.12. The KR-periodicity is related to a similar periodicity of representa-
tions of Clifford algebras: M2pRq b C`p,q » C`p`1,q`1

We can recover the Bott periodicity for K and KO from the KR-periodicity.

Proposition 1.13. There are natural isomorphisms:

KRpS1,2 ˆ X q » KRpS1,0 ˆ X q » K pX q,

KRpS2,4 ˆ X q » KRpS2,0 ˆ X q » KSC pX q,

KRpS4,8 ˆ X q » KRpS4,0 ˆ X q

KSC is the self-conjugate K -theory.

2 Global Equivariant K -theory Spectra

2.1 Borel equivariant theories from non-equivariant spectra

Let E be a non-equivariant generalized cohomology theory. We obtain a global
functor:

E pG q :“ E 0pBG q.
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The contravariant functoriality of E in G follows from the functoriality of classifying
spaces. The transfer map for inclusions of subgroups H Ă G is the Becker-Gottlieb
transfer tr : Σ8`BG Ñ Σ8`BH. More generally, for a compact Lie group G and a
cofibrant G -space X , we have the Borel equivariant cohomology theory represented
by E : E˚pEG ˆG X q. These Borel cohomology theories are represented by a global
homotopy type.

Construction 2.1. [GHT, 4.5.21] Given an orthogonal spectrum E , we define a
new orthogonal spectrum bE by setting

pbE qpV q “ MappLpV ,R8q, E pV qq,

for an inner product space V . OpV q acts on bE pV q by conjugation. The structure
maps σV ,W are defined by the composites

SV ^MappLpW ,R8q, E pW qq
assembly
ÝÝÝÝÝÑ MappLpW ,R8q, SV ^ E pW qq

MappresW ,σE
V ,W q

ÝÝÝÝÝÝÝÝÝÝÑ MappLpV ‘W ,R8q, E pV ‘W qq,

where resW : LpV ‘ W ,R8q Ñ LpW ,R8q is the restriction of isometric embed-
dings. The structure maps are functorially given by

OpV , W q ^MappLpV ,R8q, E pV qq ÝÑ MappLpW ,R8q, E pW qq

pw ,ϕq ^ f ÞÝÑ tψ ÞÑ E pw ,ϕqpf pψ ˝ ϕqqu

The endofunctor b on orthogonal spectra comes a natural transformation iE :
E Ñ bE that send s a points x P E pV q to the constant map LpV ,R8q Ñ E pV q
with value x . This morphism is a non-equivariant level equivalence as LpV ,R8q is
contractible.

We endow the functor b with a lax symmetric monoidal transformation

µE ,F : bE ^ bF ÝÑ bpE ^ F q.

µE ,F is constructed using the universal property of the smash product. It suffices
to define the OpV q ˆ OpW q-equivariant maps that constitute a bimorphism from
pbF , bE q to bpE ^ F q:

MappLpV ,R8q, E pV qq ^MappLpW ,R8q, F pW qq

^
ÝÑMappLpV ,R8q ˆ LpW ,R8q, E pV q ^ F pW qq

mappresV ,W ,iV ,W q
ÝÝÝÝÝÝÝÝÝÝÑMappLpV ‘W ,R8q, pE ^ F qpV ‘W qq,

where resV ,W : LpV ‘W ,R8q Ñ LpV ,R8q ˆ LpW ,R8q maps the embedding of
V ‘W to its restriction to V and W .

2.2 Connective global K -theory

Definition 2.2. Let Γ be the category whose objects are based finite sets n` “
t0, ¨ ¨ ¨ , nu with base point 0 and whose morphisms are based maps. A Γ-space is
a functor from Γ to the category of based spaces that is reduced, i.e. the value at
0` is a one-point space.
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Construction 2.3. Let U be a complex vector space of countable dimension,
equipped with a hermitian inner product. For a finite based set A, let C pU , Aq be the
space of tuples pEaq, indexed by non-base point elements of A of finite-dimensional,
pairwise orthogonal C-subspaces of U . The topology on C pC, Aq Ď

ś

A GrpUq is
the subspace topology. The base point of C pU , Aq is the tuple with Ea “ 0 for all
a. A based map α : A Ñ B induces a map C pU , Aq Ñ C pU , Bq sending pEaq to
pFbq, where

Fb “
à

αpaq“b

Ea.

Then C pUq is a Γ-space whose underlying space is

C pU , 1`q “
ž

ně0

GrCn pUq.

Every Γ-space can be evaluated on a based space by the coend construction. Write
C pU , K q “ C pUqpK q. Elements of C pU , K q are represented by an unordered tuple:

rE1, ¨ ¨ ¨ , En; k1, ¨ ¨ ¨ , kns

where pE1, ¨ ¨ ¨ , Enq is an n-tuple of finite-dimensional, pairwise orthogonal subspaces
of U and k1, ¨ ¨ ¨ , kn are points of K .

Definition 2.4. A C ‹-algebra A is a Banach algebra over C with a map x Ñ x‹

for x P A such that

• p´q‹ is an involution, i.e px‹q‹ “ x .

• px ` yq‹ “ x‹ ` y‹ and pxyq‹ “ y‹x‹.

• For λ P C, pλxq‹ “ λx‹.

• }xx‹} “ }x}}x‹}.

A bounded linear map f : A Ñ B of C ‹-algebras is a ‹-homomorphism if f pxyq “
f pxqf pyq and f px‹q “ pf pxq‹q. f is called ‹-isomomorphism if it is bijective. In
that case, say A and B are isomorphic.

Remark 2.5. When K is a finite based discrete space, C pU , K q agrees with the
original definition. When K is compact, we have

C pU , K q » colim
VĂU ,dim Vă8

C ‹pC0pK q, EndCpV qq,

where C0pK q is the C ‹-algebra of continuous C-valued functions on K that vanish
at the base point.

Remark 2.6. C pU , S1q » UpUq, the group of unitary isometries on U that is
identity on the orthogonal complement of some finite dimensional subspace of U .

The symmetric power of a vector space V is defined to be Symn
pV q “ Vbn{Σn.

Write SympV q “
À

ně0 Symn
pV q. This is the free commutative C-algebra gener-

ated by V . As C-algebras, SympV q b SympW q » SympV ‘W q.
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Lemma 2.7. If V has a Hermitian inner product, then there is a preferred inner
product on Symn

pV q, making SympV q b SympW q » SympV ‘W q an isometry.

Construction 2.8. [GHT, 6.3.9] We define the connective global K -theory spec-
trum ku by setting

kupV q “ C
`

SympVCq, SV
˘

,

where V is an Euclidean inner product space, VC is its complexification with the
induced Hermitian inner product. The action of OpV q on V extends to a unitary
action on SympVCq. OpV q then acts on C pSympVCq, SV q diagonally.

To define the ring spectrum structure on ku, first notice for based spaces K and
L, there is a continous multiplication map:

C pU , K q ^ C pV, Lq ÝÑ C pU b V, K ^ Lq

rEi ; ki s ^ rFj ; lj s ÞÝÑ rEi b Fj ; ki ^ lj s

These multiplication maps are associative and commutative. Now define a an
pOpV q ˆ OpW qq-equivariant multiplication map

µV ,W : kupV q ^ kupW q “ C
`

SympVCq, SV
˘

^ C
`

SympWCq, SW
˘

Ñ C
`

SympVCq b SympWCq, SV ^ SW
˘

» C
`

SymppV ‘W qCq, SV‘W
˘

“ kupV ‘W q.

The maps µV ,W are associative and commutative. The OpV q-equivariant unit map
is given by

ιV : SV ÝÑ C
`

SympVCq, SV
˘

“ kupV q, v ÞÑ rC ¨ 1; v s,

where C ¨ 1 :“ Sym0
pVCq.

Construction 2.9 (Complex conjugation on ku). As SympVCq » CbR SymRpV q,
SympVCq has an involution ψSympV q, inducing the complex conjugation on ku:

ψV “ C pψSympV q, SV q : kupV q ÝÑ kupV q.

Construction 2.10. Analogously, one can define the connective real global K -
theory by setting

kopV q “ CRpSympV q, SV q,

where CRpUq is the Γ-space of tuples of pairwise orthogonal, finite-dimensional real
subspaces of U .

Proposition 2.11. [GHT, Proposition 6.3.17] The orthogonal spectra ku and ko
are globally connective.
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2.3 Periodic global K -theory

Construction 2.12 (The C ‹-algebra s). A graded C ‹-algebra is a C ‹-algebra A
equipped with a ‹-automorphism α : A Ñ A such that α2 “ id. The ˘1-eigenspaces
of α give a Z{2-grading on A:

Aeven “ ta P A | αpaq “ au and Aodd “ ta P A | αpaq “ ´au.

The conjugation of A preserves this grading.
Let s be the C ‹-algebra of complex valued continuous functions on R vanishing

at 8. The involution on s is given by

αpf qptq “ f p´tq.

The even and odd parts of s under this involution coincide with the usual definition
of even and odd functions.

Construction 2.13 (Complex Clifford algebras). Let V be a Euclidean inner product
space. Define the complex Clifford algebra C`pV q to be

C`pV q :“ pTV qC{pv b v ´ |v |2 ¨ 1q,

where TV “
À

ně0 Vbn is the free tensor algebra on V . The original space V
embeds into the degree 1 part of TV and thus the odd part of C`pV q. This
construction is functorial for R-linear isometric embedding, so the action of OpV q
on V naturally extends to C`pV q.

C`pV q is a Z{2-graded OpV q-C ‹-algebra. The involution on C`pV q is defined
by setting rv s‹ “ rv s for v P V Ď C`pV q and extending this to a C-semilinear
anti-automorphism. The norm on C`pV q is a restriction of operator norms via an
embedding C`pV q ãÑ EndCpΛ

˚pVCqq. This embedding is an extension of V ãÑ

EndCpΛ
˚pVCqq by the universal property of C`pV q.

The C` functor is monoidal, i.e there is an isomorphism of graded C-algebras

µV ,W : C`pV ‘W q
„
ÝÑ C`pV q b C`pW q,

where b is the graded tensor product.

Construction 2.14 (Periodic global K -theory). [GHT, 6.4.9] Let V be a Euclidean
inner product space. SympVCq inherits a Hermtian inner product and an OpV q-
action by C-linear isometries. SympVCq is infinite dimensional (unless V “ 0) but
not complete. Denote by HV the Hilbert space completion of SympVCq. The action
OpV q extends to HV , making it a complex Hilbert space representation of OpV q.
Denote by KV the C ‹-algebra of compact operators onHV . Now define the periodic
global K -theory KU by setting

KUpV q “ C ‹grps,C`pV q bKV q.

Here, we considerKV as evenly graded, so the grading of C`pV qbKV is entirely from
C`pV q. The topology of KUpV q comes from the pointwise convergence topology
in the operator norm of KV and the base point is the zero ‹-homomorphism.
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The continuous action of OpV q on HV induces an OpV q-action on KV by
conjugation. Together with the OpV q-action on C`pV q, it gives an OpV q-action
on KUpV q.

The multiplication on KU is defined as follows. First there is isomorphism of
C ‹-algebras

KV b̂KW » KV‘W ,

where b̂ is the complete tensor product. From this we obtain an isomorphism of
graded C ‹-algebras:

pC`pV q bKV qb̂pC`pW q bKW q » pC`pV q b C`pW qq b pKV b̂KW q

» C`pV ‘W q bKV‘W .

Now define the multiplication map µV ,W : KUpV q ^ KUpW q Ñ KUpV ‘W q as
the composite:

C ‹grps,C`pV q bKV q ^ C ‹grps,C`pW q bKW q
b̂
ÝÑ C ‹grpsb̂s, pC`pV q bKV qb̂pC`pW q bKW qq

∆˚

ÝÝÑ C ‹grps, pC`pV q bKV qb̂pC`pW q bKW qq

„
ÝÑ C ‹grps,C`pV ‘W q bKV‘W q.

These multiplication maps are associative and commutative. To describe the unit
map of this multiplication, we need to define the ”functional calculus” map:

fc : SV ÝÑ C ‹grps,C`pV q bKV q, v ÞÑ p´qrv s,

where for f P s

f rv s “ fcpvqpf q “

$

&

%

f p|v |q ¨ 1, when f is even;
f p|v |q
|v | ¨ rv s when f is odd and v ‰ 0;

0 when f is odd and v “ 0.

Define the unit map ηV : SV Ñ C ‹grps,C`pV q bKV q by

SV fc
ÝÑ C ‹grps,C`pV q bKV q

p´bp0q˚
ÝÝÝÝÝÑ C ‹grps,C`pV q bKV q “ KUpV q,

where p0 P KV is the projection of the symmetric algebra onto its 0-th summand.

Construction 2.15. We now describe a ring spectrum map j : ku Ñ KU. For each
inner product space V , we need to define

jpV q : kupV q “ C
`

SympVCq, SV
˘

ÝÑ C ‹grps,C`pV q bKV q “ KUpV q.

For a configuration

rE1, ¨ ¨ ¨ , En; v1, ¨ ¨ ¨ , vns P C
`

SympVCq, SV
˘

,

8



we define the associated ‹-homomorphism to be

jpV qrE1, ¨ ¨ ¨ , En; v1, ¨ ¨ ¨ , vns :s ÝÑ C`pV q bKV

f ÞÝÑ
n
ÿ

i“1

f rvi s b pEi ,

where f rvi s “ fcpvi qpf q and pE denotes the orthogonal projection onto a subspace E .
One can check jpV qrEk ; vk s is Z{2-graded. Furthermore, jpV q is OpV q-equivariant,
multiplicative and unital. Thus the maps jpV q indeed form a morphism of ultra-
commutative ring spectra.

We now describe the equivariant Bott periodicity for KU. Let G be a compact
Lie group, and V an orthogonal G -representation. Denote by C0pV ,C`pV qq the
G -C ‹-algebra of continuous C`pV q-valued functions on V that vanish at infinity.
Functional calculus provides a distinguished graded ‹-homomorphism:

βV : s ÝÑ C0pV ,C`pV qq, βV pf qpvq “ f rv s.

As the functional calculus map is G -equivariant, βV is invariant under the conju-
gation action of G on C0pV ,C`pV qq. Let HG be any complete G -Hilbert space
universe and KG be the G -C ‹-algebra of (not necessarily equivariant) compact op-
erators on HG , with G acting by conjugation.

Theorem 2.16 (Equivariant Bott Periodicity). [GHT, Theorem 6.4.17] For every
G -C ‹-algebra A, the map

βV ¨ ´ : C ‹grps, AbKG q ÝÑ C ‹grps, C0pV ,C`pV qq b AbKG q

is a G-weak equivalence.

Construction 2.17. We define global connective K -theory kuc . This will NOT
be a connective equivariant theory as the homotopy groups πG

˚ pkuc
q do not vanish

in negative degrees if G is non-trivial. This is a ”globalization” of the connective
equivariant K -theory in [Gr]. kuc is the homotopy pullback of the following diagram:

kuc bpkuq

KU bpKUq

{
bpjq

iKU

Here, bp´q is the Borel construction in 2.1 that comes with an endofunctor i : id Ñ
b, and j : ku Ñ KU is the spectrum map constructed in 2.15.
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