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1 Equivariant Thom-Pontryagin construction

Goal: Explain the following diagram of equivariant homology theories:

NG
˚ mOG

˚ mOPG
˚

NG :S
˚ MOG

˚ MOPG
˚

ΘG

–

ΘG

In this diagram:

1. MO is the ultra-commutative Thom spectrum, mO is an E8-Thom spectrum.
MOP and mOP are periodic extensions of MO and mO, respectively.

2. The vertical transformation in the middle column is an isomorphism for G “ e.
This is not true in general.

3. NG
˚ is a geometrically defined equivariant bordism and NG :S

˚ is a stable equiv-
ariant bordism. They are not represented by orthogonal spectra, but defined
from bordism classes of G -manifolds.

4. The two ΘG maps are equivariant Thom-Pontryagin construction and its sta-
bilization”. The upper ΘG is an isomorphism when G is a product of finite
groups and a torus.

1.1 Global Thom spectra

We first define the global Thom spectra: MGr, MOP, MO, mOP and mO.

Example 1.1. We start with MGr, the Thom spectrum over the additive Grass-
mannian Gr. The value of Gr at each inner product space V is

GrpV q “
ž

ně0

GrnpV q.

The total space of the tautological Euclidean vector bundle (of no constant rank)
over GrpV q consists of points px , Uq such that x P U P GrpV q. We define MGrpV q
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to be the Thom space of this tautological bundle over GrpV q. The structure maps
are given by

OpV , W q ^MGrpV q ÝÑ MGrpW q

pw ,ϕq ^ px , Uq ÞÝÑ pw ` ϕpxq,ϕK ‘ ϕpUqq,

where ϕK is the orthogonal complement of the image of ϕ : V Ñ W . Multiplication
maps are defined by direct sum:

µV ,W : MGrpV q ^MGrpW q ÝÑ MGrpV ‘W q

px , Uq ^ px 1, U 1q ÞÝÑ ppx , x 1q, pU, U 1qq.

Unit maps are defined by

ηpV q : SV ÝÑ MGrpV q, v ÞÝÑ pv , V q.

The multiplication maps are binatural, associative, commutative and unital, making
MGr an ultra-commutative ring spectrum. MGr is graded, with the k-th homoge-
neous summand given by

MGrrkspV q “ Th
`

Gr |V |`kpV q
˘

.

This shows MGr is concentrated in non-positive degrees and the unit morphism
η : S Ñ MGr is an isomorphism onto MGrr0s. Let V be a representation of a
compact Lie group G , we define the inverse Thom class τG ,V P MGrG0 pS

V q as a
class represented by the G -map:

tG ,V : SV ÝÑ ThpGrpV qq ^ SV “ MGrpV q ^ SV

v ÞÝÑ p0, t0uq ^ p´vq.

The internal degree of τG ,V is equal to ´ dim V .

Example 1.2. We define two ultra-commutative ring spectra MO and MOP. MOP
is a Thom spectra over the orthogonal space BOP, whose value at an inner product
space V is

BOPpV q “
ž

ně0

GrnpV
2q.

Define MOPpV q as the Thom space of the tautological vector bundle over BOPpV q.
The structure maps are given by

OpV , W q ^MOPpV q ÝÑ MOPpW q

pw ,ϕq ^ px , Uq ÞÝÑ ppw , 0q ` BOPpϕqpxq, BOPpϕqpUqq.

Multiplication maps are defined by

µV ,W : MOPpV q ^MOPpW q ÝÑ MOPpV ‘W q

px , Uq ^ px 1, U 1q ÞÝÑ pκV ,W px , x 1q,κV ,W pU ‘ U 1qq,
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where κV ,W V 2 ‘W 2 „
ÝÑ pV ‘W q2 is the preferred isometry defined by

κV ,W ppv , v 1q, pw , w 1qq “ ppv , wq, pv 1, w 1qq.

Unit maps are defined by

ηV : SV ÝÑ MOPpV q, v ÞÝÑ ppv , 0q, pV ‘ 0qq.

The multiplication maps make MOP an ultra-commutative ring spectrum. The
orthogonal space BOP is Z-graded, with k-th homogeneous summand

BOPrkspV q “ Gr |V |`kpV
2q.

The Thom spectra MOP inherits the Z-grading from BOP. MOPpV q is the wedge

sum of the Thom spaces MOPrkspV q for ´|V | ď k ď |V | and thus

MOP “
ł

kPZ
MOPrks.

We define MO “ MOPr0s. It is an ultra-commutative ring spectrum on its own
right. Explicitly, MOpV q is the Thom space of the tautological vector bundle over
Gr |V |pV

2q.

Example 1.3. We define two E8-ring spectra mO and mOP, the Thom spectra
over the orthogonal spaces bO and bOP. The value of bOP at an inner product
space V is

bOPpV q “
ž

ně0

GrnpV ‘ R8q,

For a linear isometric embedding ϕ : V Ñ W , the induced map bOPpϕq :
bOPpV q Ñ bOPpW q is defined as

bOPpϕqpLq “ pϕ‘ R8qpLq ` ppW ´ ϕpV qq ‘ 0q.

Over bOPpV q sits a tautological Euclidean vector bundle (of non-constant rank) and
we define mOPpV q as the Thom space of this tautological bundle. The structure
maps are given by

OpV , W q ^mOPpV q ÝÑ mOPpW q

pw ,ϕq ^ px , Uq ÞÝÑ ppw , 0q ` bOPpϕqpxq, bOPpϕqpUqq.

The E8-structures on mO and mOP are inherited from those on bO and bOP by
the linear isometry operad. Multiplication maps are defined by

µV ,W : L^mOPpV q ^mOPpW q ÝÑ mOPpV ‘W q

ψ ^ px , Uq ^ px 1, U 1q ÞÝÑ pψ7px , x 1q,ψ7pU ‘ U 1qq,

where ψ7 is the linear isometric embedding

ψ7 : V ‘ R8 ‘WR8 ÝÑ V ‘W ‘ R8

pv , y , w , zq ÞÝÑ pv , w ,ψpy , zqq.

3



Unit maps are defined by

ηV : SV ÝÑ mOPpV q, v ÞÝÑ ppv , 0q, pV ‘ 0qq.

mOP is Z-graded, mOPrkspV q is the Thom space of the tautological bundle over

bOPrkspV q “ Gr |V |`kpV ‘R8q. Then mOPpV q is the wedge sum of mOPrkspV q
for |V | ` k ě 0 and there is a decomposition

mOP “
ł

kPZ
mOPrks.

We define mO “ mOPr0s to the zeroth summand in this decomposition.

The equivariant cohomology theories represented by the global Thom spectra
are related by the following:

MGrG˚ pAq
invert τG ,R
ùùùùùùñ mOPG

˚ pAq
invert all τG ,V
ùùùùùùùñ MOPG

˚ pAq

More precisely, we define maps a : MGr Ñ MOP and b : MGr Ñ mOP, whose
values at an inner product space V are

apV q : MGrpV q ÝÑ MOPpV q px , Lq ÞÝÑ ppx , 0q, L‘ 0q,

bpV q : MGrpV q ÝÑ mOPpV q px , Lq ÞÝÑ ppx , 0q, L‘ 0q.

The localized MOP and mOP are defined by

MGrGk pAqr1{τG ,V s “ colim
VPspUG q

MGrGk pA^ SV q

MGrGk pAqr1{τG ,Rs “ colim
ně0

MGrGk pA^ Snq,

where the structure maps are

MGrGk pA^ SV q
τG ,W´V
ÝÝÝÝÑ MGrGk pA^ SV ^ SW´V q » MGrGk pA^ SW q,

MGrGk pA^ Snq
τG ,R
ÝÝÑ MGrGk pA^ Sn ^ SRq » MGrGk pA^ Sn`1q.

Theorem 1.4. The maps a and b are compatible with the colimits and they as-
semble into maps

a7 : MGrGk pAqr1{τG ,V s ÝÑ MOPG
k pAq,

b7 : MGrGk pAqr1{τG ,Rs ÝÑ mOPG
k pAq.

The maps a7 and b7 are isomorphisms for every compact Lie group G , based G-space
A and integer k.
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1.2 Geometric equivariant bordism

Definition 1.5. Let G be a compact Lie group and X be a G -space. A singular
G -manifold over X is a pair pM, hq, where M is a closed smooth G -manifold and
h : M Ñ X is a continuous G -map. Two singular G -manifolds pM, hq and pM 1, h1q
are bordant if there is a triple pB, H,ψq, where B is a compact smooth G -manifold,
H : B Ñ X is continuous G -map, and ψ is an equivariant diffeomorphism:

ψ : M YM 1 „
ÝÑ BB

such that pH ˝ ψq|M “ h and pH ˝ ψq|M1 “ h1.
Bordism of singular G -manifolds over X is an equivalence relation. We denote

by NG
n pX q the set of bordism classes of n-dimensional singular G -manifolds over

X . The sets becomes an abelian group under disjoint union.

Proposition 1.6. NG
˚ is an equivariant homology theory, i.e. it satisfies the follow-

ing:

1. Functorial in continuous G -maps.

2. G -equivariant homotopy invariant.

3. Takes G -weak equivalences to isomorphisms.

4. Takes disjoint unions of G -spaces to direct sums.

5. Has Mayer-Vietoris sequences for good pairs of G -spaces.

Construction 1.7. There is a distinguished class dG ,V P rNG
˚ pS

V q for a G -representation
V . Stereographic projection is a G -equivariant map

ΠV : SpR‘ V q
„
ÝÑ SV , px , vq ÞÝÑ

v

1´ x
.

We define a reduced G -bordism class over SV by

dG ,V “ JSpR‘ V q, ΠV K P rNG
|V |pS

V q.

Proposition 1.8. dG ,V ^ dG ,W “ dG ,V‘W P rNG
|V |`|W |pS

V‘W q.
If G acts trivially on V and X is a cofirant based G -space, then the exterior

product map with dG ,V is an isomorphism:

´^ dG ,V : rNG
n pX q

„
ÝÑ rNG

n`|V |pX ^ SV q.

Construction 1.9. To every smooth closed G -manifold M, we assoicate a normal
class xMy P MGrG0 pM`q. This class is the geometric input for the Thom-Pontryagin
map to equivariant mO-homology. If dim M “ m, then the class lives in the
summand MGrr´ms of MGr.

By Mostow-Palais embedding theorem, there is a G -equivariant embedding i :
M ãÑ V for some G -representation V . Without loss of generality, assume V is
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a sub-representation of the chosen complete G -universe UG . Define ν to be the
normal bundle of the embedding, where the metric is provided by the inner product
on V . We can also assume, the embedding is wide in the sense that the exponential
map px , vq ÞÑ ipxq ` v on the unit disk bundle Dpνq of ν is a G -embedding into
a tubular neighborhood of M. This determines a G -equivariant Thom-Pontryagin
map

cM : SV ÝÑ ThpGrpV qq ^M` “ MGrpV q ^M`

by sending points outside the tubular neighborhood to the base point and

cMpipxq ` vq “

ˆ

v

1´ |v |
, νx

˙

^ x .

The normal class is the homotopy class of the collapse map cM .

Proposition 1.10. The normal class does not depend on the choice of a wide
embedding.

Construction 1.11. Equivariant Thom-Pontryagin construction:

ΘG “ ΘG pX q : rNG
˚ pX q ÝÑ mOG

˚ pX q.

Let pM, hq be an m-dimensional singular G -manifold over a based G -space X . All
the geometry is encoded in the normal class xMy P MGrG0 pM`q. We define

ΘG rM, hs “ pb ^ hq˚xMy ¨ p˚G pσ
mq P mOG

mpX q,

where b : MGr Ñ mOP is a map of ring spectra whosed value at an inner product
space V is

bpV q : MGrpV q Ñ mOPpV q, px , Lq ÞÑ ppx , 0q, pL‘ 0qq,

σ P πe
1pmOPr1sq is periodicity class, inverse to t P πe

´1pmOPr´1s
q represented by

p0, t0uq P ThpGr 0pR‘ R8qq “ mOPr´1s
pRq,

and pG : G Ñ e is the projection map that induces a map p˚G : πe
˚p´q Ñ πG

˚ p´q.

Proposition 1.12. The class ΘG rM, hs P mOG
mpX q only depends on the bordism

class of the singular G-manifold pM, hq.

Example 1.13. ΘG pdG ,V q “ τG ,V P mOG
mpS

V q is the shifed inverse Thom class in
mO.

Theorem 1.14. ΘG is a transformation of equivariant homology theories and com-
patible with homomorphisms of compact Lie groups.

Theorem 1.15 (Wasserman). Let G be a compact Lie group that is isomorphic to
a product of finite group and a torus . Then for every cofibrant G -space X , the
Thom-Pontryagin map

ΘG pX q : NG
˚ pX q ÝÑ mOG

˚ pX`q

is an isomorphism.
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Construction 1.16. We define stable equivariant bordism groups rNG :S
˚ pX q of a

based G -space X as the localization of rNG
˚ pX q by formally inverting all classes

dG ,V . That is
rNG :S
˚ pX q “ colim

VPspUG q

rNG
m`|V |pX ^ SV q,

where spUG q is the poset of finite dimensional G -representations in the G -universe
UG and for V Ď W the structure map in the colimit is the multiplication

rNG
m`|V |pX ^ SV q

´^dG ,W´V
ÝÝÝÝÝÝÝÑ rNG

m`|W |pX ^ SV ^ SW´V q – rNG
m`|W |pX ^ SW q.

As the Thom-Pontryagin construction takes dG ,V to the shifed inverse Thom
class τG ,V P mO|V |

G pSV q, the following diagram commutes

rNG
m pX q mOG

mpX q

rNG
m`|V |pX ^ SV q mOG

m`|V |pX ^ SV q.

ΘG

´^dG ,V ´¨τG ,V

ΘG

The colimit of this diagram assembles into a natural transformation:

ΘG : rNG :S
m pX q ÝÑ mOG

mpX qr1{τ s.

Theorem 1.17. For every compact Lie group G and every cofibrant based G -space
X , then map

ΘG pX q : rNG :S
˚ pX q ÝÑ mOG

˚ pX qr1{τ s

is an isomorphism of graded abelian groups.

Corollary 1.18. For a cofirant based G-space, there are natural isomorphisms:

rNG :S
m pX q

ΘG

ÝÝÑ mOG
mpX qr1{τ s

„
ÝÑ MOG

˚ pX q.

2 Equivariant complex cobordism spectra

2.1 Complex cobordism and formal groups

Definition 2.1. A cohomology theory is called complex oriented if it is multiplica-
tive and it satisfies Thom isomorphism for (almost) complex vector bundles.

Proposition 2.2. Let E be a complex oriented cohomology theory, then

1. E˚pCP8q » E˚JtK where t P E 2pCP8q is the first Chern class of the tauto-
logical line bundle ξ over CP8.

2. Let pi : CP8 ˆ CP8 Ñ CP8 be the projection map of the i-th component
for i “ 1, 2. Then E˚pCP8 ˆ CP8q » E˚Jt1, t2K, where ti “ p˚i c1pξq.
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3. The tensor product of line bundles over CP8 induces a E0-formal group struc-
ture on spf E pCP8q. Denote this formal group associated to a complex-

oriented cohomology theory E by pGE .

4. E pS2kq can be identified ωk , the k-th tensor power of the sheaf of invariant

differentials on pGE .

Example 2.3. Here are two examples of complex oriented cohomology theories and
their associated formal groups:

1. For ordinary cohomology theory, pGH » pGa is the additive formal group.

2. For complex K -theory, pGK » pGm is the multiplicative formal group.

Theorem 2.4 (Quillen). The formal group associated to periodic complex cobor-
dism MUP is the universal formal group. More precisely, the pair

pMU˚, MU˚pMUqq “ pMUP0, MUP0pMUPqq

classifies formal groups and strict isomorphisms between formal groups.

2.2 Real bordism

Let ρ2 be the real regular representation of C2.

Construction 2.5. We construct the real cobordism spectrum MUR. It is a C2-
equivariant commutative ring admitting a canonical homotopy presentation

MUR » holim
ÝÑ

S´Cn

^MUpnq » holim
ÝÑ

S´nρ2 ^MUpnq.

We will first construct a commutative real algebra MUR P CAlgpSpRq and apply
the Quillen equivalence:

i! : SpR SpC2 : i˚ .

We define MUR to be the spectrum i!MU 1R, where MU 1R Ñ MUR is a cofibrant
commutative algebra approximation. Elements in this construction are described
below:

Definition 2.6. The category IC is the topological category whose objects are finite
dimensional Hermitian vector spaces and whose morphism space is the Thom space

ICpA, Bq “ ThpUpA, Bq; B ´ Aq,

where UpA, Bq is the Stiefel manifold of unitary embeddings A ãÑ B and B ´ A is
the orthogonal completement of A in B under the embedding.

The category The category IR is the C2-equivariant topological category whose
objects are finite dimensional orthogonal real vector spaces and whose morphism
space is the Thom space

IRpV , W q “ ICpVC, WCq,

with C2 acting by complex conjugation.
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Definition 2.7. The category SpC of complex spectra is the topological category
of (continuous) functors IC Ñ T .

The category SpR of real spectra is the topological category of C2-enriched
functors IR Ñ T C2

and equivariant natural transformations.

Let i : IR Ñ IC2 be the functor sending V to V b ρ2. The restriction functor
i˚ : SpC2 Ñ SpR has both a left and right adjoint denoted by i! and i˚, respectively.
i! sends S´VC to S´Vρ2 .

We define the real spectrum MUR by sending V P IR to MUpVCqThpBUpVCq, VCq
with C2 acting by complex conjugation. MUR P CAlgpSpRq as the functor is a lax
symmetric monoidal if we use Segal’s construction of BUpVCq.

Proposition 2.8.

1. The non-equivariant spectrum underlying MUR is the usual complex cobor-
dism spectrum MU.

2. There is a equivalence ΦC2 MUR » MO.

We now describe the relations between MUR, real orientations and formal groups.
Consider CPn and CP8 as pointed C2-spaces under complex conjugation, with CP0

the base point. The fixed point spaces are RPn and RP8, and ther are homeomor-
phisms CPn

{CPn´1
» Snρ2 . In particular CP1

» Sρ2 .

Definition 2.9 (Araki). Let E be C2-equivariant homotopy commutative ring spec-

trum. A real orientation of E is a class x P rEρ2

C2
pCP8q whose restriction to

rEρ2

C2
pCP1

q “ rEρ2

C2
pSρ2q » E 0

C2
pptq

is a unit. A real oriented spectrum is a C2-equivariant ring spectrum E equipped
with a real orientation.

Example 2.10. The zero section CP8 Ñ MUp1q is an equivariant equivalence and
defines a real orientation

x P MUρ2

R pCP
8
q,

making MUR into a real oriented spectrum.

Example 2.11. If pX , xHq and pE , xE q are two real oriented spectra, then H ^ E
has two real orientations given by xH b 1 and 1b xE .

Theorem 2.12 (Araki). Let E be a real oriented cohomology theory, then there
are isomorphisms

E ‹pCP8q » E ‹JxK,

E ‹pCP8 ˆ CP8q » E ‹Jx b 1, 1b xK.

It follows the tensor product map CP8 ˆ CP8 Ñ CP8 defines a formal group
law over πG

‹ . A real orientation x corresponds to a coordinate the corresponding
formal group.
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If pE , xE q is a real oriented spectrum, then E ^ MUR has two orientations
xE “ xE b 1 and xR “ 1b x . These two series are related by a power series

xR “
ÿ

bix
i`1
E ,

that defines classes
bi “ b

E

i P π
C2

iρ2
E ^MUR.

This power series is an isomorphism of formal group laws FE to FR over πC2
‹ E ^

MUR, where FE and FR are formal groups associated to pE , xE q and pMUR, xRq,
respectively.

Theorem 2.13 (Araki). The map

E‹rb1, b2, ¨ ¨ ¨ s Ñ πC2
‹ E ^MUR

is an isomorphism.

Passing to geometric fixed points

x : CP8 Ñ Σρ2 MUR a : RP8 » MOp1q Ñ ΣMO
geom fixed pt

defines the MO Euler class of the tautological line bundle. Like MU˚, Quillen
shows that the multiplication RP8ˆRP8 Ñ RP8 induces a formal group law over
MO˚ that is universal formal group law F over a ring of characteristic 2 such that
r2sF “ 0.

Let e P H1pRP8;Z{2q be the HZ{2 Euler class (Stiefel-Whitney class) of the
tautological line bundle. Over π˚pHZ{2^MOq, the classes e and a are related by
a power series

e “ `paq “ a`
ÿ

αnan`1.

Lemma 2.14. The composite series

´

a`
ÿ

α2j´1a2j
¯´1

˝ `paq “ a`
ÿ

ją0

hja
j`1

has coefficients in π˚MO. The classes h2k´1 “ 0 and the remaining hj are polyno-
mial generators for the unoriented cobordism ring:

π˚MO “ Z{2rhj | j ‰ 2k ´ 1s.

Let G “ C2n and localize all spectra at the prime 2. Write g “ |G | and let
γ P G be a fixed generator.

Definition 2.15. MUppGqq :“ NG
C2

MUR

For H Ă G , the unit of the restriction-norm adjunction gives a canonical com-
mutative algebra map

MUppHqq Ñ i˚HMUppGqq.

Write i˚1 for i˚C2
.
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2.3 Universal properties of real bordism

Let R˚ be a graded ring and F px , yq P R˚Jx , yK be a homogeneous formal group
(deg x “ deg y “ ´2). Let c : R˚ Ñ R˚ be a graded ring homomorpshism such
that c2n : R2n Ñ R2n is multiplication by p´1qn. Define F c “ c˚F , we have

F cpx , yq “ ´F p´x ,´yq.

c induces strict isomorphisms F
„
ÝÑ F c and F c „

ÝÑ F by cpxq “ ´r´1sF pxq. This
is called the conjuate action on F .

Proposition 2.16. [HHR, Example 11.27] MUR is universal in the sense that
MU˚ Ñ R˚ classifying a homogeneous formal group law is C2-equivariant for any
choice of conjugation action.

The real orientation i˚1 MUR Ñ MUppGqq for G “ C2n induces a formal group law
F with a G -action that extends the conjugation action on by C2 Ď G .

Proposition 2.17. [HHR, Proposition 11.28] This pair pMUppGqq, F q is universal in
the sense that

HomG, gr

´

πu
˚

´

MUppGqq
¯

, R˚

¯

»

"

Formal groups over R˚ with a G-action
extending the conjugation action by C2 Ď G

*
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