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1 Equivariant Thom-Pontryagin construction
Goal: Explain the following diagram of equivariant homology theories:

G
NE -2 m0O¢ —— mOP¢

J | |

NG~ MO —— MOP{

In this diagram:

1. MO is the ultra-commutative Thom spectrum, mO is an E,-Thom spectrum.
MOP and mOP are periodic extensions of MO and mO, respectively.

2. The vertical transformation in the middle column is an isomorphism for G = e.
This is not true in general.

3. N is a geometrically defined equivariant bordism and 9$*° is a stable equiv-
ariant bordism. They are not represented by orthogonal spectra, but defined
from bordism classes of G-manifolds.

4. The two ©¢ maps are equivariant Thom-Pontryagin construction and its sta-
bilization”. The upper ©F is an isomorphism when G is a product of finite
groups and a torus.

1.1 Global Thom spectra
We first define the global Thom spectra: MGr, MOP, MO, mOP and mO.

Example 1.1. We start with MGr, the Thom spectrum over the additive Grass-
mannian Gr. The value of Gr at each inner product space V is

Gr(V) =[] Gra(V).

n=0

The total space of the tautological Euclidean vector bundle (of no constant rank)
over Gr(V) consists of points (x, U) such that x € U € Gr(V). We define MGr(V)



to be the Thom space of this tautological bundle over Gr(V). The structure maps
are given by

o(V, W) A MGr(V) — MGr(W)
(W, @) A (x, U) = (W + p(x), 9" @ p(U)),
where o is the orthogonal complement of the image of ¢ : V — W. Multiplication
maps are defined by direct sum:

wv.w : MGr(V) A MGr(W) — MGr(V @ W)
(x, U) A (X, U) — ((x,x), (U, U").

Unit maps are defined by
n(V):S5Y — MGr(V), v+ (v,V).

The multiplication maps are binatural, associative, commutative and unital, making
MGr an ultra-commutative ring spectrum. MGr is graded, with the k-th homoge-
neous summand given by

MGr (V) = Th (Gryv 4« (V)) .

This shows MGr is concentrated in non-positive degrees and the unit morphism
n : S — MGr is an isomorphism onto MGrl® Let V be a representation of a
compact Lie group G, we define the inverse Thom class 7¢,v € MGrg(SV) as a
class represented by the G-map:

tev:SY — Th(Gr(V)) A SV = MGr(V) A SV
v—> (0,{0}) A (=v).

The internal degree of 76,y is equal to —dim V.

Example 1.2. We define two ultra-commutative ring spectra MO and MOP. MOP
is a Thom spectra over the orthogonal space BOP, whose value at an inner product
space V is

BOP(V) = [ [ Gra(V?).

n=0

Define MOP(V) as the Thom space of the tautological vector bundle over BOP (V).
The structure maps are given by

O(V, W) A MOP(V) — MOP(W)
(w, ) A (x, U) —> ((w, 0) + BOP(y)(x), BOP(p)(V)).

Multiplication maps are defined by

jv.w - MOP(V) A MOP(W) — MOP(V @ W)
(x, U) A (X', U") — (kv w(x, X)), sy w(U® U)),



where Ky V2@ W2 =5 (V@ W)? is the preferred isometry defined by

kv,w((v, V), (w, W) = ((v, w), (V', w)).

Unit maps are defined by
nY:SY — MOP(V), v+— ((v,0),(V®0)).

The multiplication maps make MOP an ultra-commutative ring spectrum. The
orthogonal space BOP is Z-graded, with k-th homogeneous summand

BOPM (V) = Gry (V).

The Thom spectra MOP inherits the Z-grading from BOP. MOP(V) is the wedge
sum of the Thom spaces MOP*!(V) for —|V| < k < |V| and thus

MOP =\ / MOP!].
keZ

We define MO = MOP!% It is an ultra-commutative ring spectrum on its own
right. Explicitly, MO(V) is the Thom space of the tautological vector bundle over
Gr‘\/|(\/2).

Example 1.3. We define two E-ring spectra mO and mOP, the Thom spectra
over the orthogonal spaces bO and bOP. The value of bOP at an inner product
space V is

bOP(V) = [ [ Gra(V ®R™),

n=0

For a linear isometric embedding ¢ : V — W, the induced map bOP(p) :
bOP(V) — bOP(W) is defined as

bOP(p)(L) = (¢ @ R™)(L) + (W = ¢(V)) ©0).

Over bOP (V) sits a tautological Euclidean vector bundle (of non-constant rank) and
we define mOP(V) as the Thom space of this tautological bundle. The structure
maps are given by

O(V, W) A mOP(V) — mOP(W)
(w, ) A (x, U) — ((w, 0) + bOP(p)(x), bOP(p)(U)).

The Eg-structures on mO and mOP are inherited from those on bO and bOP by
the linear isometry operad. Multiplication maps are defined by

pv.w i L AmOP(V) A mOP(W) — mOP(V e W)
A (xU) A (XU = (9(x X)), (U U'),
where 1)y is the linear isometric embedding
Py VORP O WR* — Vo WOR™
vy, w,z) — (v, w,1(y, 2)).



Unit maps are defined by
7Y :SY — mOP(V), v+ ((v,0),(V®0)).

mOP is Z-graded, mOP[k](V) is the Thom space of the tautological bundle over
bOP™ (V) = Gry| 4 (V@R®). Then mOP(V) is the wedge sum of mOP (V)
for |V| + k = 0 and there is a decomposition

mOP = \/ mOP!].

keZ

We define mO = mOP!Y to the zeroth summand in this decomposition.

The equivariant cohomology theories represented by the global Thom spectra
are related by the following:

invert 76 r invert all 7,y

MGr¢ (A) mOP¢ (A) MOP¢ (A)

More precisely, we define maps a : MGr — MOP and b : MGr — mOP, whose
values at an inner product space V are

a(V) : MGr(V) — MOP(V) (x, L)
b(V): MGr(V) — mOP(V) (x, L)
The localized MOP and mOP are defined by

MGr{ (A)[1/76.v] = colim MGrS(A A SY)

co
VES(Z/{G)
MGr (A)[1/76 ] = cog(r)n MGrS(A A S,

where the structure maps are

MGrS (A SY) E2 MGrE (A A SV A SW=Y) =~ MGrE (A A SW),
MGrS (A A S™) 55 MGFE (A A S™ A SB) ~ MGFE (A A 5™1).

Theorem 1.4. The maps a and b are compatible with the colimits and they as-
semble into maps

a' : MGrS (A)[1/7¢.v] — MOPE (A),
b* : MGr{ (A)[1/76 r] — mOPS (A).

The maps a* and b are isomorphisms for every compact Lie group G, based G-space
A and integer k.



1.2 Geometric equivariant bordism

Definition 1.5. Let G be a compact Lie group and X be a G-space. A singular
G-manifold over X is a pair (M, h), where M is a closed smooth G-manifold and
h: M — X is a continuous G-map. Two singular G-manifolds (M, h) and (M’, i)
are bordant if there is a triple (B, H, ), where B is a compact smooth G-manifold,
H : B — X is continuous G-map, and % is an equivariant diffeomorphism:

v MuM =5 0B

such that (Ho )|y = hand (Ho )|y = H.

Bordism of singular G-manifolds over X is an equivalence relation. We denote
by N,®(X) the set of bordism classes of n-dimensional singular G-manifolds over
X. The sets becomes an abelian group under disjoint union.

Proposition 1.6. NC is an equivariant homology theory, i.e. it satisfies the follow-
ing:

~

. Functorial in continuous G-maps.

2. G-equivariant homotopy invariant.

3. Takes G-weak equivalences to isomorphisms.

4. Takes disjoint unions of G-spaces to direct sums.

5. Has Mayer-Vietoris sequences for good pairs of G-spaces.

Construction 1.7. There is a distinguished class dg v € ./\N/f(SV) for a G-representation
V. Stereographic projection is a G-equivariant map

v

My : SR V) — sV, (x,v) —

1—x
We define a reduced G-bordism class over SV by

dev = [SR@® V),Ny] e N §, (SY).

Proposition 1.8. dG,V A dG,W = dG,V@W € /\N/‘“G/ +\W\(SV®W>‘
If G acts trivially on V' and Xis a cofirant based G-space, then the exterior
product map with dg v is an isomorphism:

— ndey  NEX) =5 NG (X A SY).
Construction 1.9. To every smooth closed G-manifold M, we assoicate a normal
class (M) € MGr§ (M,.). This class is the geometric input for the Thom-Pontryagin
map to equivariant mO-homology. If dim M = m, then the class lives in the
summand MGrl=™ of MGr.

By Mostow-Palais embedding theorem, there is a G-equivariant embedding i :
M — V for some G-representation V. Without loss of generality, assume V is



a sub-representation of the chosen complete G-universe Ug. Define v to be the
normal bundle of the embedding, where the metric is provided by the inner product
on V. We can also assume, the embedding is wide in the sense that the exponential
map (x,v) — i(x) + v on the unit disk bundle D(v) of v is a G-embedding into
a tubular neighborhood of M. This determines a G-equivariant Thom-Pontryagin
map

cm 2 SY — Th(Gr(V)) A My = MGr(V) A M,

by sending points outside the tubular neighborhood to the base point and

em(i(x) + v) = (1_‘/V|”> A X.

The normal class is the homotopy class of the collapse map cy.

Proposition 1.10. The normal class does not depend on the choice of a wide
embedding.

Construction 1.11. Equivariant Thom-Pontryagin construction:
0°¢ = ©%(X) : NS(X) — mOS(X).

Let (M, h) be an m-dimensional singular G-manifold over a based G-space X. All
the geometry is encoded in the normal class (M) e MGr§ (M, ). We define

OS[M, h] = (b A h)u(M) - pi(c™) € mOS(X),

where b : MGr — mOP is a map of ring spectra whosed value at an inner product
space V is

b(V): MGr(V) - mOP(V), (x,L)— ((x,0),(L&d0)),
o € 7¢(mOPM) is periodicity class, inverse to t € ¢, (mOP!™) represented by
(0,{0}) € Th(Gro(R®R®)) = mOPI"H(R),
and pg : G — e is the projection map that induces a map p§ : 7&(—) — 7<(—).

Proposition 1.12. The class ©¢[M, h] € mO¢ (X) only depends on the bordism
class of the singular G-manifold (M, h).

Example 1.13. ©%(dg ) = 7¢,v € mO&(SVY) is the shifed inverse Thom class in
mO.

Theorem 1.14. ©€ s a transformation of equivariant homology theories and com-
patible with homomorphisms of compact Lie groups.

Theorem 1.15 (Wasserman). Let G be a compact Lie group that is isomorphic to
a product of finite group and a torus . Then for every cofibrant G-space X, the
Thom-Pontryagin map

0%(X) : NE(X) — mOS(X.)

is an isomorphism.



Construction 1.16. We define stable equivariant bordism groups 91¢5(X) of a

based G-space X as the localization of /\fo(X) by formally inverting all classes
dG,V' That is

TGS _ e %

NS> (X) = vceosl(lz,[ng)N”’HV'(X ASY),

where s(Uc) is the poset of finite dimensional G-representations in the G-universe
U and for V € W the structure map in the colimit is the multiplication

Nn€+‘v‘(X A 5\/) M)N'n61+‘w‘(x N SV N SW_V) ;N£+‘W|(X N SW)

As the Thom-Pontryagin construction takes dg y to the shifed inverse Thom

class 76,y € mO|V|[¢(5Y), the following diagram commutes

NE(X) —© s mOS(X)

—A dc,vJ{ l—'?c,v

~ G
NE (X A SY) =S mOg, (X A SY).

The colimit of this diagram assembles into a natural transformation:

0% : NES(X) — mOS(X)[1/7].

Theorem 1.17. For every compact Lie group G and every cofibrant based G-space
X, then map N
0% (X) : MF*(X) — mOg (X)[1/7]

is an isomorphism of graded abelian groups.

Corollary 1.18. For a cofirant based G-space, there are natural isomorphisms:

NES(X) 2% mOC(X)[1/7] => MOS(X).

2 Equivariant complex cobordism spectra

2.1 Complex cobordism and formal groups

Definition 2.1. A cohomology theory is called complex oriented if it is multiplica-
tive and it satisfies Thom isomorphism for (almost) complex vector bundles.

Proposition 2.2. Let E be a complex oriented cohomology theory, then

1. E*(CP™) ~ E,[t] where t € E?(CP™) is the first Chern class of the tauto-
logical line bundle ¢ over CP™.

2. Let p; : CP* x CP* — CP% be the projection map of the i-th component
for i =1,2. Then E*(CP* x CP%) ~ E,[t1, tp], where t; = p¥c1(&).



3. The tensor product of line bundles over CP* induces a Ey-formal group struc-
ture on spf E(CP®). Denote this formal group associated to a complex-

oriented cohomology theory E by Gg.

4. E(S%F) can be identified w*, the k-th tensor power of the sheaf of invariant
differentials on Gg.

Example 2.3. Here are two examples of complex oriented cohomology theories and
their associated formal groups:

1. For ordinary cohomology theory, EJH ~ 6;3 is the additive formal group.
2. For complex K-theory, GK ~ ém is the multiplicative formal group.

Theorem 2.4 (Quillen). The formal group associated to periodic complex cobor-
dism MUP is the universal formal group. More precisely, the pair

(MU, MU, (MU)) = (MUPy, MUPy(MUP))

classifies formal groups and strict isomorphisms between formal groups.

2.2 Real bordism

Let po be the real regular representation of C.

Construction 2.5. We construct the real cobordism spectrum MUg. It is a C;-
equivariant commutative ring admitting a canonical homotopy presentation

MUz ~ holigS™" A MU(n) ~ holimS™="?> A MU(n).
We will first construct a commutative real algebra MU € CAlg(Spy) and apply
the Quillen equivalence:
i Spr T Spe it .

We define MUg to be the spectrum i MUy, where MU — MU is a cofibrant
commutative algebra approximation. Elements in this construction are described
below:

Definition 2.6. The category I¢ is the topological category whose objects are finite
dimensional Hermitian vector spaces and whose morphism space is the Thom space

Ic(A, B) = Th(U(A, B); B — A),

where U(A, B) is the Stiefel manifold of unitary embeddings A< B and B — A is
the orthogonal completement of A in B under the embedding.

The category The category I is the Cy-equivariant topological category whose
objects are finite dimensional orthogonal real vector spaces and whose morphism
space is the Thom space

IR(V, W) = Ic(Vc, We),

with G, acting by complex conjugation.



Definition 2.7. The category Sp. of complex spectra is the topological category
of (continuous) functors I — T.

The category Spyr of real spectra is the topological category of Cy-enriched
functors I — IQ and equivariant natural transformations.

Let i : lr — Ic, be the functor sending V' to V ® p». The restriction functor
i*:Sp% — Spy has both a left and right adjoint denoted by i, and i, respectively.
iy sends S™V¢ to S Ve,

We define the real spectrum MUy by sending V' € Iz to MU(V¢) Th(BU(Ve), Vi)
with G, acting by complex conjugation. MUy € CAlg(Spg) as the functor is a lax
symmetric monoidal if we use Segal's construction of BU(V¢).

Proposition 2.8.

1. The non-equivariant spectrum underlying MUy is the usual complex cobor-
dism spectrum MU.

2. There is a equivalence ®< MUy ~ MO.

We now describe the relations between MUy, real orientations and formal groups.
Consider CP" and CP* as pointed C,-spaces under complex conjugation, with CP°
the base point. The fixed point spaces are RP” and RP%, and ther are homeomor-
phisms CP"/CP"~! ~ §"2_ In particular CP* ~ S*2,

Definition 2.9 (Araki). Let E be Gy-equivariant homotopy commutative ring spec-
trum. A real orientation of £ is a class X € EZ2(CP™) whose restriction to

o 1 o 0

Egzz((CIP’ ) = Eg;(SPZ) ~ E¢,(pt)
is a unit. A real oriented spectrum is a C-equivariant ring spectrum E equipped
with a real orientation.

Example 2.10. The zero section CP* — MU(1) is an equivariant equivalence and
defines a real orientation
x € MUg? (CP™),

making MUg into a real oriented spectrum.

Example 2.11. If (X,Xy) and (E,Xg) are two real oriented spectra, then H A E
has two real orientations given by Xy ® 1 and 1 ® Xg.

Theorem 2.12 (Araki). Let E be a real oriented cohomology theory, then there
are isomorphisms

E*(CP®) ~ E*[x],
E*(CP® x CP®) ~ E*[x® 1, 1®X].
It follows the tensor product map CP* x CP* — CP% defines a formal group

law over €. A real orientation X corresponds to a coordinate the corresponding
formal group.



If (E,xg) is a real oriented spectrum, then E A MUg has two orientations
Xg =Xeg®1 and Xxg = 1 ® X. These two series are related by a power series

XR = ZE,‘?’E-H,
that defines classes .
bi = b; € 72 E A MUg.

This power series is an isomorphism of formal group laws Fg to Fg over T2 E A
MUy, where Fg and Fg are formal groups associated to (E,xg) and (MU, Xr),
respectively.

Theorem 2.13 (Araki). The map
E.[b1,ba,---] = 72E A MUg
is an isomorphism.
Passing to geometric fixed points

geom fixed pt
RN

X : CP* — 72 MUg a:RP*® ~ MO(1) - MO

defines the MO Euler class of the tautological line bundle. Like MU,, Quillen
shows that the multiplication RP* x RP® — RP® induces a formal group law over
MO, that is universal formal group law F over a ring of characteristic 2 such that
[2]F = 0.

Let e € HY(RP*;Z/2) be the HZ/2 Euler class (Stiefel-Whitney class) of the
tautological line bundle. Over 7, (HZ/2 A MO), the classes e and a are related by
a power series

e=/((a)=a+ Eananﬂ.

Lemma 2.14. The composite series
N —1 .
(a + Zazjﬂf’) of(a)=a+ Z hjad*t
j>0

has coefficients in 7, MO. The classes hy«_1; = 0 and the remaining h; are polyno-
mial generators for the unoriented cobordism ring:

MO = Z,/2[h; | j # 2K —1].

Let G = G» and localize all spectra at the prime 2. Write g = |G| and let
v € G be a fixed generator.
Definition 2.15. MU(®) := N& MUg

For H c G, the unit of the restriction-norm adjunction gives a canonical com-
mutative algebra map
MUH) i,"j/\//U((G)).

Write ij* for Ic,-

10



2.3 Universal properties of real bordism

Let Ry be a graded ring and F(x,y) € Ry[x, y] be a homogeneous formal group
(degx = degy = —2). Let ¢ : R, — R, be a graded ring homomorpshism such
that o : Rop — Rap is multiplication by (—1)". Define F¢ = c¢*F, we have

Fe(x,y) = =F(=x,—y).

¢ induces strict isomorphisms F — F€ and F¢ — F by ¢(x) = —[—1]¢(x). This
is called the conjuate action on F.

Proposition 2.16. [HHR, Example 11.27] MUy is universal in the sense that
MU, — Ry classifying a homogeneous formal group law is Cy-equivariant for any
choice of conjugation action.

The real orientation i MUgr — MU(C) for G = Cpn induces a formal group law
F with a G-action that extends the conjugation action on by G, € G.

Proposition 2.17. [HHR, Proposition 11.28] This pair (MU®) | F) is universal in
the sense that

u ((G))) ) N Formal groups over R, with a G-action
Homg, g (W* (MU R ) = { extending the conjugation action by C, < G
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