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1. Preliminary computation

From [HHR, Thm 6.1] and the proof of [HHR, Lemma 6.7] we see that the slices of
MU ((C2n )) has the form

HZ[C2n · r1, C2n · r2, ...].
The definition of the notation is in [HHR, Section 2.4], but we would like to give a few
example of what does it mean.

Example 1.1. For G = C2, the slices of MUR are HZ[r1, r2, ...]. The 0 slice is
HZ, the 2 slice is Σρ2HZ, generated by r1 and the 4 slice is two copies of Σ2ρ2HZ,
generated by r21 and r2.

For G = C4, the slices of MU ((C4)) are HZ[C4 · r1, C4 · r2, ...]. The 0 slice is HZ,
the 2 slice is C4/C2+∧Σρ2HZ, generated by r1 and the 4 slice is the wedge of Σρ4HZ
and two copies of C4/C2+ ∧Σ2ρ2HZ, where the former is generated by N(r1) and the
latter by r21 and r2.

With the understanding of slices, we can start to compute slice spectral sequence. In
general, we want to compute the slice spectral sequence as an RO(G)-graded spectral
sequence of Mackey functors whenever it is possible. There are two different kinds of
slices

(1) Induced slice of the form G+ ∧H ΣkρHHZ.
(2) Non-induced slices ΣkρGHZ.

The homotopy of induced slices can be computed in the subgroup H first then induce
up. We need the following definition.

Definition 1.2. Let H ⊂ G and M be a H-Mackey functor. The induced Mackey
functor ↑GH M is the G-Mackey functor defined by the composition

BG
i∗H // BH

M // Ab.

where the first functor is the forget functor from G-sets to H-sets.

Proposition 1.3.
πV (G+ ∧H X) ∼=↑GH πi∗HV (X).

This is a direct consequence of Wirthmüller isomorphism.

Proposition 1.4. Let G = C2n , then 2-locally there are essentially n+1 non-isomorphic
irreducible G-representations. They are 1, the trivial representation, σ, the sign repre-

sentation and λk, the R2-representation given by rotating 2k+1π
2n for 0 ≤ k < n− 1.
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We can visualize some cellular structure. The idea of constructing such a simple
cellular structure is the following lemma.

Lemma 1.5. Let K ⊂ H ⊂ G, then there is no G-sets map G/H → G/K.

This lemma tells us that we should build G-CW-structure representation spheres out
of sequences of fixed points, by smaller and smaller subgroups.

Example 1.6. G = C2, V = nσ for n ≥ 0. SV has a cellular structure as following:
Its 0-cell is fixed, and it has one free cell in each dimension between 1 and n. Therefore
the cellular chain complex is

Z Z[C2]oo Z[C2]oo ...oo Z[C2]oo

one can compute its homology by the fact that the underlying chain complex compute
the homology of ordinary Sn.

In general, in πF(HZ) there are a few important elements that generates an impor-
tant part of the coefficient ring.

Definition 1.7. (1) Let aV be the map aV : S0 → SV by embedding S0 as
{0,∞}. Its Hurewicz image in H0(SV ;Z) shares the same name.

(2) If V is orientable (i.e. the defining map G→ O(V ) factors through SO(V )),
then there is a unique class uV ∈ H |V |(S

V ;Z) restricts to the preassigned

underlying generator of H̃|V |(S
V ).

Theorem 1.8. Let G = C2n , then as a ring, πGF(HZ) for −F an actual representation
is the following

Z[aσ, aλk , u2σ, uλk ]/(2n−kaλk , 2aσ, gold relations)

where the gold relations are aλkuλl = 2k−laλluλk for k > l.

Exercise 1.9. Let G = C4, compute Sλ, S2λ, S2σ+2λ and show all possible multipli-
cations by a and u.

Let V be an actual representation, H̃∗(S
−V ;Z) ∼= H̃−∗(SV ;Z), therefore one can

compute via similar cochain complexes. Direct computation gives the following:

Proposition 1.10. For G = C2n and k < 0, H̃−2(SkρG ;Z) = 0.

This is an ingredient of the gap theorem.
Before we start computing the slice spectral sequence, there is one more facts we

need.

Proposition 1.11. (1) Fix k > l, aλk is the composition of aλl and a map
aλk
aλl

: Sλl → Sλk . Therefore inverting aλk will make aλl invertible. Spe-

cially, inverting aσ makes all aV invertible.
(2) πGF(a−1σ HZ) = Z/2[a±λk , a

±
σ , u2σ].

(3) πF(a−1σ G/H+ ∧HZ) = 0.

Remark 1.12. The geometric reason of this proposition is the fact that S∞σ ∧ SV '
S∞σ if V G = 0.
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2. the Slice theorem and some permanent cycles

With all the preparation, we can start to compute some differentials in the slice
spectral sequence of N2n

2 MUR. In general, there are a lot of slice differentials in the
slice spectral sequence, but for the purpose of the Kervaire invariants, we only need
one family of them.

Theorem 2.1 ([HHR, Thm 9.9]). Let G = C2n , g = |G| and ρG = ρG−1 the reduced

sign representation, then di(u
2k−1

2σ ) = 0 for i < r = 1 + (2k − 1)g and

dr(u
2k−1

2σ ) = N(r2k−1)a2
k−1
ρG

a2
k

σ .

This session is mostly about the proof of this theorem.

Definition 2.2. Let R be a G-commutative ring spectrum and x ∈ πHV (R). N(x) ∈
πG
indGHV

(R) the internal norm of x is defined by

Sind
G
HV ' NG

H (SV ) // NG
H (i∗HR) // R.

The geometric input we need to resolving these differentials is exactly the geometric
fixed points.

Proposition 2.3. (1) The C2-geometric fixed point of MUR is MO.
(2) ΦG(NG

C2
X) ' ΦC2(X) if X is cofibrant.

(3) If G = C2n , then ΦG(X) ' (a−1σ X)G

Proposition 2.4. For each G = C2n there is a set of elements rGi ∈ πC2
iρ2

(N2n

2 MUR)
such that

(1) πC2
∗ρ2(N2n

2 MUR) = Z[rG1 , r
G
1 , ...]

(2) ΦG(N(rGi )) is hi if i 6= 2k − 1 and 0 if i = 2k − 1. Where hi are generators of

π∗(MO) = F2[hi|i 6= 2k − 1].

Now, we can invert aσ in each slice of N2n

2 MUR and it computes a−1σ N2n

2 MUR,
whose H-fixed points are trivial for H 6= G (as aσ is null-homotopic restricting to H),
and whose G-fixed point is MO. By the proposition above, a−1σ SSS(N2n

2 MUR) is
very simple: Induced slices contribute nothing, and non-induced slices gives Z/2[x] for
x in degree 2, and we know this spectral sequence computes π∗(MO).

When G = C2, the E2-page of the integral graded a−1σ SSS(MUR) is the following:
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When G = C4, the E2-page of the integral graded a−1σ SSS(MUR) is the following:
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Notice that these pictures come without ranks. The rank on the n-th diagonal is the

number of degree 2n monomials in Z/2[r1, r2, ...].
From the picture, we see that when G changes, the aσ-inverted slice spectral se-

quence doesn’t change much: their E2-pages are isomorphic after reindexing.

Proposition 2.5. As a ring, the integral E2-page of a−1σ SSS(N2n

2 MUR) is

Z/2[a−2σ u2σ][Nr1a
−1
ρG
, Nr2a

−2
ρG
, ...]

The RO(G)-graded E2-page is

Z/2[a±λk , a
±
σ , u2σ][Nri]
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for 0 ≤ k ≤ n− 2 and i ≥ 1.

Notice that by the choice of ri, we have ΦG(N(ri)) = hi if i 6= 2k − 1 and
ΦG(N(r2k−1)) = 0. This uniquely determines all the differentials in aσ-inverted slice
spectral sequence, and the differentials exactly reads as the theorem. If we write
everything as modules over permanent cycles Z/2[a2σr2, a

4
σr4, ...], then it becomes

a−1σ SSS(BPR) and it computes π∗(HZ2).
Now that we resolve completely a−1σ SSS(MU ((C2n ))), we can pullback these dif-

ferentials along the map SSS(MU ((C2n ))) → a−1σ SSS(MU ((C2n ))). The following
picture shows when G = C4, the ∗ − 2σ grading E2-page of SSS(MU ((C2n ))), where
the class u22σ lives. One see immediately that in the range related to differentials on
u22σ, the spectral sequence is isomorphic to the aλ-inverted one, at the class a−2σ u2σ.
Therefore, u2σ must support the same differential as a−2σ u2σ. The exact same argument

works for all u2
k

2σ, thus we prove the slice differential theorem.
In the range that only contains the norm part (above the line of slope 2n − 1), one

can think the slice spectral sequence as chopping off negative filtration elements from
the aσ-inverted one, which means that in the aσ-inverted spectral sequence, cycles
that killed by negative filtration elements become non-trivial permanent cycles. The
first example of such an element is r1u

2
2σ in G = C2: in a−1σ SSS(MUR) there is a

differential d3(a−3σ u32σ) = r1u
2
2σ, but such a differential cannot exist in SSS(MUR).

Furthermore, the potential differential d7(r1u
2
2σ) = r1r2a

7
σ = d3(r2a

4
sσu2σ) tells us

that its d7 target is already gone after d3, and by degree reason there is no more target
it can potentially hit, so we can conclude that r1u

2
2σ is a nontrivial permanent cycle in

SSS(MUR).

One shall believe that the same argument works for all N(r2k−1)u2
k

2σ for all G = C2n ,
since in the range we consider, the spectral sequences are exactly the same after reindex.

Corollary 2.6. The classes N(r2k−1)u2
k

2σ are nontrivial permanent cycles in MU ((C2n )).

These classes give us enough material to obtain periodicity.

3. the periodicity theorem

The motivation and the first example of the periodicity theorem is the C2-spectrum
kR := MUR/(r2, r3, ...). Its associated graded slice is

HZ[r1]

and the slice spectral sequence is determined by d3(u2σ) = a3σr1. After d3 we see that
by degree reason u22σ is a permanent cycle. Notice that r41u

2
2σ is a permanent cycle in

πC2
8 (kR). Let KR := r−11 kR, then the map

Σ8KR
r41u

2
2σ // KR

is an underlying equivalence, since u2σ restricts to 1 and r1 is invertible. Therefore, it
induces a weak equivalence

Σ8KO // KO ,

which is the classical real Bott periodicity.
The second example is MUR. By the last corollary, we see that r1u

2
2σ is a permanent

cycle in MUR. That means, even though u2σ supports a differential in SSS(MUR),
it becomes a permanent cycle in r−11 MUR. By the same argument, we see that the
homotopy fixed point (r−11 MUR)hC2 is 8-periodic.
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So, how do we play a similar game to MU ((C2n ))? We wish to make a power of
a certain u a permanent cycle, and then use N(r1)-power to make it into the integer
degrees. That means, this u must be a power of u2ρG . To make a power of u2ρG a
permanent cycle, we first need the following decomposition.

Proposition 3.1.

u2ρG =
∏

06=H⊂G

NG
H (u

h/2
2σH

).

Where σH is the sign representation of the subgroup H ⊂ G.

This means that if we can make some power of u2σH a permanent cycle for each
0 6= H ⊂ G, then we can make a power of u2ρG a permanent cycle. By the same
argument in MUR, we only need to invert N(rH2i−1) for each H and some i.

Example 3.2. (1) Let G = C4 and we invert D = N(rC2
1 )N(rC4

1 ). That means,
both u22σ and u22σC2

becomes permanent cycles. By the decomposition u2ρ4 =

u22σN
4
2 (u2σC2

), we see that u2ρ4 is not permanent cycle but u22ρ4 is. Thus the

integral degree cycle is (rC4
1 )4u22ρ4 in degree 16. Therefore D−1MU ((C4)))hC4

is also 8-periodic.
(2) In the above example, if we instead invert N(rC2

3 ) and N(rC4
1 ), we then make

u22σ and u42σC2
permanent cycles. That means u42ρ4 is the minimal permanent

cycle after inverting. The integral graded permanent cycle is (rC4
1 )8u42ρ4 in

degree 32.

From these examples we see that by choosing different rH2i−1 to invert for different
H ⊂ G, we can obtain various different periodic homotopy fixed point. But there is
only one spectrum we want.

Corollary 3.3. Let G = C8 and D = N(rC2
15 r

C4
3 rC8

1 ). Then in Ω̃ := D−1MU ((C8)),

u162ρ8 is a permanent cycle, and in integral degree N(rC8
1 )32u162ρ8 is a cycle in degree

256. Therefore Ω := (Ω)hC8 is 256-periodic.

The spectrum Ω is the detecting spectrum used in proving the non-existence of
Kervaire invariant one elements.

Remark 3.4. As one can see, the choice of elements to invert affects the periodicity in
an essential way, and we can produce lower periodicity by inverting smaller r. The only
reason we choose G = C8 and D = N(rC2

15 r
C4
3 rC8

1 ) is that this is the smallest setting
that the detection theorem works, which is an incredible combination of equivariant
homotopy, chromatic homotopy theory and tools from local class field theory.

Before we end this part, there is some foundation to mention. If we are careful
enough, we see that we are using norm in an essential way in D−1MU ((C8)) to prove
that its homotopy fixed point is 256-periodic. But in general, it is NOT ture that
localization preserves G-commutative ring structure, therefore those norms are not
guaranteed. The following theorem of Hill and Hopkins makes sure that in this case
everything works out.

Theorem 3.5. Let R be a G-commutative ring spectrum and D ∈ πGFR. If for each

H ⊂ D, NG
H i
∗
HD divides a power of D, then D−1R has a unique G-commutative ring

structure such that R→ D−1R is a map of G-commutative rings.

One can check that N(ri) satisfies the condition: NG
H i
∗
HN(ri) = N(ri)

[G:H], there-

fore we do have norms in D−1MU ((C8)).
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4. the homotopy fixed point theorem

Besides of the detection theorem, there is still one more step to patch everything
together: The gap theorem tells us that in the fixed point π−2(D−1MU ((C8)))C8 = 0,
but the periodicity theorem tells us that the homotopy fixed point (D−1MU ((C8)))hC8

is 256-periodic. One commonly used comparison machinery between fixed points and
homotopy fixed points is the Tate diagram. Let EG be a contractible free G-CW
complex and X, then we can consider the following diagram of G-spectra, namely, the
Tate diagram of X.

EG+ ∧X //

'
��

X //

��

ẼG ∧X

��
EG+ ∧ F (EG+, X) // F (EG+, X) // ẼG ∧ F (EG+, X)

The horizontal maps are induced by the cofibre sequence EG+ → S0 → ẼG smash-
ing with either X or F (EG+, X). The vertical map is induced by applying F (−x) to
EG+ → S0. Notice first that the left vertical map is an equivalence, since both spec-

tra are free. Therefore when X = D−1MU ((C8)), if we can show both ẼG ∧X and
ẼG ∧ F (EG+, X) are contractible, then by five lemma on the long exact sequence of
homotopy groups, XC8 ' XhC8 .

First we show that ẼG ∧X is contractible. We can do it by proving all geometric

fixed points ΦH(ẼG ∧X is contractible. When H = {e}, since the underlying space

of ẼG is S∞, it is contractible. For nontrivial H ⊂ G, since ΦH is monoidal, we have

ΦH(ẼG ∧X ' ΦH(ẼG) ∧ ΦH(X) ' S0 ∧ ΦH(X) ' ΦH(X).

Now since some rH2i−1 is invertible for each nontrivial H, and ΦH(NH
C2

(rH2i−1)) =

0, ΦH(X) = 0. For F (EG+, X), notice that it is a module over X, therefore
ΦH(F (EG+, X)) is a retract of ΦH(F (EG+, X) ∧ X), which is contractible. This
finishes the proof.

Remark 4.1. The idea of the proof works for any ring spectrum in the weakest sense:
Given a G-homotopy ring spectrum R, if you can show that for any nontrivial H ⊂ G,
ΦH(R) is contractible, then RG ' RhG.
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