the Detection Theorem Preliminaries

Guchuan Li

August 17, 2019

The goal of these two talks is to prove the detection theorem:
Theorem 1. [2, Theorem 11.1] If $\theta_{j} \in \pi_{2^{j+1}-2} S^{0}$ is an element of Kervaire invariant 1 , and $j>2$, then the image of θ_{j} in $\pi_{2^{j+1}-2} \Omega$ is non-zero.

We will use Adams-Novikov spectral sequence (ANSS) to study $\theta_{j} \in \pi_{2^{j+1}-2} S^{0}$ and its image in $\pi_{2^{j+1}-2} \Omega$. This will reduce the problem to an algebraic one on the E_{2} page. The algebraic problem can be reduced to an easier one via a construction using formal A-modules. The goal of this talk is to briefly introduce ANSS and formal A-modules.

1 Adams-Novikov Spectral Sequence

1.1 Construction

Set up: let E be an associative ring spectrum (homotopy commutative) and assume that $E_{*} E$ is flat over E_{*}.

Theorem 2. [1, Theorem 15.1] Given a spectrum X, we have the E-based AdamsNovikov spectral sequence

$$
E_{2}^{s, t}=E x t_{E_{*} E}^{s}\left(E_{*}, E_{*+t} X\right) \Rightarrow \pi_{t-s} X_{E}^{\wedge}
$$

The construction follows from the cosimplicial resolution:

$$
X_{\bullet}: X \rightarrow E \wedge X \rightarrow E \wedge E \wedge X \rightarrow \cdots
$$

The total space $\operatorname{Tot}\left(X_{\bullet}\right)$ is X_{E} and the ANSS is the Bousfield-Kan spectral sequence.

1.2 E_{2} page

Definition 3. [5, A 1.1.1] A Hopf algebroid over a commutative ring K is a cogroupoid in the category of (graded or bigraded) commutative K-algebras,i.e., a pair (A, Γ) of commutative K-algebra with structure maps such that for any commutative K-algebra B, the sets $\operatorname{Hom}(A, B)$ and $\operatorname{Hom}(\Gamma, B)$ are the objects and morphisms of a groupoid.

The pair $\left(E_{*}, E_{*} E\right)$ is a Hopf algebroid. Here is the structure.

$$
E \rightarrow E \wedge E \rightarrow E \wedge E \wedge E
$$

where the first part has three maps: left unit, right unit, multiplication; the second map is id \wedge unit \wedge id. We can identify $E \wedge E \wedge E$ with $(E \wedge E) \wedge \underset{E}{\wedge}(E \wedge E)(E$ is associative). Applying π_{*}, the second part gives the coproduct ($E_{*} E$ is flat over E_{*})

$$
E_{*} E \rightarrow E_{*} E \underset{E_{*}}{\otimes} E_{*} E
$$

Similarly, $E_{*} X$ is a $E_{*} E$ comodule.
In general, if (A, Γ) is a Hopf algebroid and M is a Γ comodule, we have the cobar resolution

$$
C_{\Gamma}^{*}: M \rightarrow \Gamma \otimes_{A}^{\otimes} M \rightarrow \Gamma_{A}^{\otimes_{A}^{2}} \underset{A}{\otimes} M \rightarrow \cdots
$$

By definition, the cohomology $H^{*}\left(C_{\Gamma}^{*}\right)$ is $\operatorname{Ext}_{E_{*} E}^{*}\left(E_{*}, M\right)$. One can identify the E_{2} page from this.

1.3 Examples

Example 4. The classical Adams spectral sequence Let E be $H \mathbb{F}_{2}, X$ be the sphere spectrum S. Then $S_{H \mathbb{F}_{2}}^{\wedge}$ is the 2-completed sphere S_{2}^{\wedge} and

$$
E_{*} E=\mathcal{A}=\mathbb{F}_{2}\left[\xi_{1}, \xi_{2}, \cdots\right],\left|\xi_{i}\right|=2^{i}-1
$$

is the dual Steenrod algebra.
Here are some interesting elements on the E_{2} page $E x t_{\mathcal{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$. In this case, the cobar resolution to compute the E_{2}-page is

$$
\mathbb{F}_{2} \rightarrow \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \rightarrow \cdots
$$

In degree 1 , we will write $\xi_{1} \in \mathcal{A}$ as [ξ_{1}]. In degree 2 , we will write $\xi_{1} \otimes \xi_{1} \in \mathcal{A} \otimes \mathcal{A}$ as $\left[\xi_{1} \mid \xi_{1}\right]$. You can see the pattern.

$$
\left[\xi_{1}^{2^{i}}\right]=h_{i} \in E x t^{1} \Rightarrow \text { Hopf invariant } 1 \text { elements. }
$$

For example, h_{0} converges to 2 , h_{1} converges to η, but from h_{4}, they do not survive in the homotopy.

$$
d_{2} h_{i}=h_{0} h_{i-1}^{2}
$$

$$
\left[\xi_{1}^{2^{i}} \mid \xi_{1}^{2^{i}}\right]=h_{i}^{2} \in E x t^{2} \Rightarrow \text { Kervaire invariant } 1 \text { elements }
$$

Example 5. The Adams-Novikov spectral sequence Let E be the p primary BrownPeterson spectrum $B P, X$ be the sphere spectrum S. Then $S_{\hat{B P}}^{\wedge}$ is the p-local sphere $S_{(2)}$ and

$$
\begin{gathered}
B P_{*}=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \cdots\right],\left|v_{i}\right|=2\left(p^{i}-1\right) \\
B P_{*} B P=B P_{*}\left[t_{1}, t_{2}, \cdots\right],\left|t_{i}\right|=2\left(p^{i}-1\right)
\end{gathered}
$$

In this case, the cobar resolution to compute the E_{2}-page is

$$
B P_{*} \rightarrow B P_{*} B P \otimes B P_{*} \rightarrow B P_{*} B P \otimes B P_{*} B P \otimes B P_{*} \rightarrow \cdots .
$$

For elements in degree 1, for example $t_{1} \otimes 1 \in B P_{*} B P \otimes B P_{*}$, we use the notation [t_{1}]1, sometimes we omit the 1 and write $\left[t_{1}\right]$ for this class. For elements in degree 1 , for example $t_{1}^{2} \otimes t_{1} \otimes v_{1} \in B P_{*} B P \otimes B P_{*} B P \otimes B P_{*}$, we use the notation $\left[t_{1}^{2} \mid t_{1}\right] v_{1}$ and you can see the pattern.

1.4 Thom Reduction

There is map from ANSS to ASS induced by the map of Hopf Algebroid

$$
\left(B P_{*}, B P_{*} B P\right) \rightarrow\left(H \mathbb{F}_{2}, \mathcal{A}\right)
$$

where $B P_{*} \rightarrow H \mathbb{F}_{2}$ is quotient map by $\left(2, v_{1}, \cdots\right)$ and $B P_{*} B P \rightarrow \mathcal{A}$ sends t_{i} to $\bar{\xi}^{2}$.
Example 6. Under Thom reduction, $\left[t_{1}\right]$ goes to $\left[\bar{\xi}_{1}^{2}\right]=\left[\xi_{1}^{2}\right]$.

1.5 Greek letter elements

The structure map in $\left(B P_{*}, B P_{*} B P\right)$ is much more complicated. One can refer to [5] Theorem A2.1.27] for the explicit formulas if one would like to try the computation by hands. To have better understanding of the E_{2} page, we introduce the greek letter elements. We will write $\operatorname{Ext}_{B P_{*} B P}\left(B P_{*}, M\right)$ as $\operatorname{Ext}(M)$ for short.

Definition 7. [5. Section 1.3] Denote the idea $\left(p, v_{1}, \cdots, v_{n-1}\right) \subset B P_{*}$ by I_{n}. The short exact sequence

$$
0 \rightarrow B P_{*} / I_{n}^{\infty} \rightarrow B P_{*} / I_{n-1}^{\infty}\left[v_{n-1}^{-1}\right] \rightarrow B P_{*} / I_{n-1}^{\infty} \rightarrow 0
$$

induces a long exact sequence in Ext groups. Denote the boundary map by

$$
\delta_{n}: \operatorname{Ext}^{s}\left(B P_{*} / I_{n}^{\infty}\right) \rightarrow \operatorname{Ext}^{s+1}\left(B P_{*} / I_{n-1}^{\infty}\right)
$$

Suppose that $x=v_{n}^{i_{n}} /\left(p^{i_{0}}, v_{1}^{i_{1}}\right), \cdots, v_{n-1}^{i_{n-1}}+\cdots$ (we only write the leading term) is an element in $\operatorname{Ext}^{0}\left(B P_{*} / I_{n}^{\infty}\right)$, then

$$
\alpha_{i_{n} / i_{n-1}, \cdots, i_{0}}^{(n)}:=\delta_{1} \circ \delta_{2} \circ \cdots \circ \delta_{n} x
$$

where $\alpha^{(n)}$ is the $n^{\text {th }}$ Greek letter. When $i_{0}=1$, we omit it from the notation.
Example 8. α family and β family.

$$
\beta_{i / j} \in \operatorname{Ext}_{B P_{*} B P}^{2,6 i-2 j}\left(B P_{*}, B P_{*}\right)
$$

Fact 9. In the bidegree of θ_{j}, there is only one class h_{j}^{2} in the classical Adams spectral sequence. However, in the ANSS, there are more than one elements. For example, in the bidegree of θ_{4}, there are $\beta_{8 / 8}, \beta_{6 / 2}$ and $\alpha_{1} \alpha_{2^{j}-1}$ ([6, Section 7.1]).

The first two lines of the ANSS have been studied in [4]. We follow notations in [6] to describe classes in ANSS in the bidegree of θ_{j} as follows:

$$
\begin{gathered}
\beta_{c(j, k) / 2^{j-1-2 k}} \\
\alpha_{1} \alpha_{2^{j}-1}
\end{gathered}
$$

where $0 \leqslant k<j$ and $c(j, k)=2^{j-1-2 k}\left(1+2^{2 k+1}\right) / 3$.

2 Formal A-modules

Follow the notations in [2, Section 11.2]. Let A and R be commutative rings, and $e: A \rightarrow R$ a ring homomorphism.

Definition 10. [5, A2.1.1] A (commutative 1-dimensional) formal group law over R is a power series $F(x, y) \in R[[x, y]]$ satisfying

1. $F(x, 0)=F(0, x)=x$,
2. $F(x, y)=F(y, x)$,
3. $F(x, F(y, z))=F(F(x, y), z)$.

Definition 11. [5, A2.1.5] Let F and G be formal group laws. A homomorphism from F to G is a power series $f(x) \in R[[x]]$ with constant term 0 such that

$$
f(F(x, y))=G(f(x), f(y)) .
$$

It is an isomorphism if it is invertible, i.e., if $f^{\prime}(0)$ (the coefficient of x) is a unit in R, and a strict isomorphism if $f^{\prime}(0)=1$. A strict isomorphism from F to the addition formal group law $x+y$ is a logarithm for F, denoted by $\log _{F}(x)$.

We have a ring homomorphism

$$
\begin{aligned}
\mathbb{Z} & \rightarrow \operatorname{End}(F) \\
n & \rightarrow[n](x)
\end{aligned}
$$

where $[1](x)=x$ and $[n+1](x)=F(x,[n](x))$.
Definition 12. A formal A-module over R is a formal group law F over R, equipped with a ring homomorphism

$$
\begin{aligned}
A & \rightarrow \operatorname{End}(F) \\
a & \rightarrow[a](x)
\end{aligned}
$$

with the property that $[a]^{\prime}(0)=e(a)$.

We are interested in the case $A=\mathbb{Z}_{2}[\zeta]$ where ζ is a primitive $8^{\text {th }}$ root of unity and $R_{*}=A\left[u, u^{-1}\right]$ where $|u|=2$. The maximal ideal of A is generated by $\pi=\zeta-1$. A is a discrete valuation ring. The valuation can be given by the divisibility of π. For example, 2 is π^{4}. unit in A.

Given a power series $f(x) \in A[[x]]$ such that

$$
\begin{aligned}
& f(x)=\pi x \bmod \left(x^{2}\right) \\
& f(x)=x^{2} \bmod (\pi)
\end{aligned}
$$

Lubin and Tate's work [3] constructed a formal A-module F_{f} over A (unique up to isomorphism) such that

$$
[\pi](x)=f(x)
$$

For $a \in A$, write

$$
[a](x)=a_{d} x^{d}+\cdots \bmod (\pi)
$$

with $0 \neq a_{d} \in A /(\pi)$ One can check that the function $v(a)=\log _{q}(d)$ defines a valuation on A. For example, $v(\pi)=1, v(2)=4$. We can define a homogeneous formal group law over a graded ring by setting $|x|=|y|=-2$. From a formal group law F_{f}, we can define a homogeneous formal group law F over R_{*} by

$$
u F(x, y)=F_{f}(u x, u y)
$$

3 Group actions and the ANSS [2, 11.3.2, 11.3.3]

Let $\mathcal{M}_{F G}$ be the category of pairs (R, F), with F a formal group law over a commutative ring R, and in which a morphism

$$
(f, \psi):\left(R_{1}, F_{1}\right) \rightarrow\left(R_{2}, F_{2}\right)
$$

consists of a ring homomorphism $f: R_{1} \rightarrow R_{2}$, and an isomorphism of formal group laws $\psi: F_{2} \xrightarrow{\cong} f_{*} F_{1}$. A (left) action of a group on (R, F) is a map of monoids

$$
G \rightarrow \mathcal{M}_{F G}((R, F),(R, F))
$$

We define a trivial $C_{8}=\langle\gamma\rangle$ action on A. Then C_{8} acts on the pair $\left(A, F_{f}\right)$ by

$$
\begin{gathered}
f_{\gamma}: A \stackrel{\text { id }}{\rightarrow} A, \\
\psi_{\gamma}=[\zeta](x): F_{f} \rightarrow f_{*} F_{f}=F_{f} .
\end{gathered}
$$

The $C_{8}=\langle\gamma\rangle$ action can be extended to $\left(R_{*}, F\right)$ by

$$
\gamma u=\zeta u .
$$

Example 13. [2, Example 11.18] Here is an example of (R, F) with G action. Suppose that E is a complex oriented, homotopy commutative ring spectrum, and that a finite group G acts on E by homotopy multiplicative maps. Let F denote the corresponding (homogeneous) formal group law over $\pi_{*} E$. Then the action of G on $E^{*}\left(\mathbb{C} P^{\infty}\right)$ gives an action of G on $\left(\pi_{*} E, F\right)$.

One can associate a Hopf algebroid to a pair (R, F) with G action. Let $C\left(G, R_{*}\right)$ be the ring of maps (as set) from G to R_{*}. (In our case, G is C_{8} and $R_{*}=$ $\mathbb{Z}_{2}[\zeta]\left[u, u^{-1}\right]$.) The pair $\left(R_{*}, C\left(G ; R_{*}\right)\right)$ is a Hopf algebroid. The structure maps are

$$
\eta_{L}: R_{*} \rightarrow C\left(G ; R_{*}\right)
$$

sending $r \in R_{*}$ to the constant function with value r;

$$
\eta_{R}: R_{*} \rightarrow C\left(G ; R_{*}\right)
$$

sending $r \in R_{*}$ to the function $g \rightarrow g \cdot r$;

$$
\Delta: C\left(G ; R_{*}\right) \rightarrow C\left(G ; R_{*}\right) \underset{R_{*}}{\otimes} C\left(G ; R_{*}\right),
$$

the composition of the map

$$
C\left(G ; R_{*}\right) \rightarrow C\left(G \times G ; R_{*}\right)
$$

dual to multiplication in G, and the isomorphism

$$
C\left(G ; R_{*}\right) \underset{R_{*}}{\otimes} C\left(G ; R_{*}\right) \stackrel{\cong}{\cong} C\left(G \times G ; R_{*}\right)
$$

given by setting

$$
\left(f_{1} \otimes f_{2}\right)\left(g_{1}, g_{2}\right)=f_{1}\left(g_{1}\right) \cdot g_{1} f_{2}\left(g_{2}\right)
$$

Moreover, there is a map of Hopf algebroids

$$
\begin{equation*}
\left(M U_{*}, M U_{*} M U\right) \rightarrow\left(R_{*}, C\left(G ; R_{*}\right)\right) \tag{1}
\end{equation*}
$$

where the map $M U_{*} \rightarrow R_{*}$ classifies the formal group law F, and the map $M U_{*} M U \rightarrow$ $C\left(G, R_{*}\right)$ is defined by declaring the composition

$$
M U_{*} M U \rightarrow C\left(G, R_{*}\right) \xrightarrow{\mathrm{ev}_{g}} R_{*}
$$

to be the map classifying the strict isomorphism

$$
[g](x): F \rightarrow g^{*} F
$$

(Here we use the fact that $M U_{*} M U$ represents strict isomorphism between formal group laws. A map $M U_{*} M U \rightarrow R$ is equivalent to a strict isomorphism between F_{1} and F_{2}.)

The map 1 induces a map

$$
\begin{equation*}
\operatorname{Ext}_{M U_{*} M U}^{s, t}\left(M U_{*}, M U_{*}\right) \rightarrow H^{s}\left(G ; R_{t}\right) \tag{2}
\end{equation*}
$$

When the G-action on $\left(R_{*}, F\right)$ arises, as in Example 13, from an action of G on a complex oriented homotopy commutative ring spectrum E, the map 2 is the E_{2}-term of a map of spectral sequences abutting to the homomorphism $\pi_{*} S^{0} \rightarrow \pi_{*} E^{h G}$ (see details in [2, 11.3.3]).

References

[1] Adams, John Frank. Stable homotopy and generalised homology. University of Chicago press, 1974.
[2] Hill, Michael A., Michael J. Hopkins, and Douglas C. Ravenel. "On the nonexistence of elements of Kervaire invariant one." Annals of Mathematics (2016): 1-262.
[3] Lubin, Jonathan, and John Tate. "Formal complex multiplication in local fields." Annals of Mathematics (1965): 380-387.
[4] Miller, Haynes R., Douglas C. Ravenel, and W. Stephen Wilson. "Periodic phenomena in the Adams-Novikov spectral sequence." Ann. of Math 106, no. 1 (1977): 69-516.
[5] Ravenel, Douglas C. Complex cobordism and stable homotopy groups of spheres. American Mathematical Soc., 2003.
[6] Ravenel, Douglas C. Equivariant stable homotopy theory and the Kervaire invariant. Draft available online: http://web.math.rochester.edu/people/ faculty/doug/mybooks/esht.pdf

