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The goal of these two talks is to prove the detection theorem:

Theorem 1. [2, Theorem 11.1] If θj ∈ π2j+1−2S0 is an element of Kervaire invariant
1, and j > 2, then the image of θj in π2j+1−2Ω is non-zero.

We will use Adams-Novikov spectral sequence (ANSS) to study θj ∈ π2j+1−2S0

and its image in π2j+1−2Ω. This will reduce the problem to an algebraic one on the
E2 page. The algebraic problem can be reduced to an easier one via a construction
using formal A-modules. The goal of this talk is to briefly introduce ANSS and
formal A-modules.

1 Adams-Novikov Spectral Sequence

1.1 Construction

Set up: let E be an associative ring spectrum (homotopy commutative) and assume
that E∗E is flat over E∗.

Theorem 2. [1, Theorem 15.1] Given a spectrum X , we have the E -based Adams-
Novikov spectral sequence

E s,t
2 = ExtsE∗E (E∗, E∗+tX )⇒ πt−sX∧E .

The construction follows from the cosimplicial resolution:

X• : X → E ∧ X → E ∧ E ∧ X → · · · .

The total space Tot(X•) is X∧E and the ANSS is the Bousfield-Kan spectral
sequence.

1.2 E2 page

Definition 3. [5, A 1.1.1] A Hopf algebroid over a commutative ring K is a
cogroupoid in the category of (graded or bigraded) commutative K-algebras,i.e.,
a pair (A, Γ) of commutative K -algebra with structure maps such that for any com-
mutative K -algebra B, the sets Hom(A, B) and Hom(Γ, B) are the objects and
morphisms of a groupoid.
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The pair (E∗, E∗E ) is a Hopf algebroid. Here is the structure.

E → E ∧ E → E ∧ E ∧ E

where the first part has three maps: left unit, right unit, multiplication; the second
map is id∧unit∧id. We can identify E ∧ E ∧ E with (E ∧ E ) ∧

E
(E ∧ E ) (E is

associative). Applying π∗, the second part gives the coproduct (E∗E is flat over E∗)

E∗E → E∗E ⊗
E∗

E∗E .

Similarly, E∗X is a E∗E comodule.
In general, if (A, Γ) is a Hopf algebroid and M is a Γ comodule, we have the

cobar resolution

C∗Γ : M → Γ⊗
A

M → Γ
⊗2

A ⊗
A

M → · · · .

By definition, the cohomology H∗(C∗Γ ) is Ext∗E∗E (E∗, M). One can identify the
E2 page from this.

1.3 Examples

Example 4. The classical Adams spectral sequence Let E be HF2, X be the sphere
spectrum S. Then S∧HF2

is the 2-completed sphere S∧2 and

E∗E = A = F2[ξ1, ξ2, · · · ], |ξi | = 2i − 1

is the dual Steenrod algebra.
Here are some interesting elements on the E2 page ExtA(F2,F2). In this case,

the cobar resolution to compute the E2-page is

F2 → A→ A⊗A → · · · .

In degree 1, we will write ξ1 ∈ A as [ξ1]. In degree 2, we will write ξ1⊗ ξ1 ∈ A⊗A
as [ξ1|ξ1]. You can see the pattern.

[ξ2i

1 ] = hi ∈ Ext1 ⇒ Hopf invariant 1 elements.

. For example, h0 converges to 2, h1 converges to η, but from h4, they do not
survive in the homotopy.

d2hi = h0h2
i−1.

[ξ2i

1 |ξ2i

1 ] = h2
i ∈ Ext2 ⇒ Kervaire invariant 1 elements.

Example 5. The Adams-Novikov spectral sequence Let E be the p primary Brown-
Peterson spectrum BP, X be the sphere spectrum S. Then S∧BP is the p-local sphere
S(2) and

BP∗ = Z(p)[v1, v2, · · · ], |vi | = 2(pi − 1),

BP∗BP = BP∗[t1, t2, · · · ], |ti | = 2(pi − 1).
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In this case, the cobar resolution to compute the E2-page is

BP∗ → BP∗BP ⊗ BP∗ → BP∗BP ⊗ BP∗BP ⊗ BP∗ → · · · .

For elements in degree 1, for example t1 ⊗ 1 ∈ BP∗BP ⊗BP∗, we use the notation
[t1]1, sometimes we omit the 1 and write [t1] for this class. For elements in degree
1, for example t2

1 ⊗ t1⊗v1 ∈ BP∗BP⊗BP∗BP⊗BP∗, we use the notation [t2
1 |t1]v1

and you can see the pattern.

1.4 Thom Reduction

There is map from ANSS to ASS induced by the map of Hopf Algebroid

(BP∗, BP∗BP)→ (HF2,A)

where BP∗ → HF2 is quotient map by (2, v1, · · · ) and BP∗BP → A sends ti to ξ̄2.

Example 6. Under Thom reduction, [t1] goes to [ξ̄2
1 ] =[ξ2

1 ].

1.5 Greek letter elements

The structure map in (BP∗, BP∗BP) is much more complicated. One can refer to [5,
Theorem A2.1.27] for the explicit formulas if one would like to try the computation
by hands. To have better understanding of the E2 page, we introduce the greek
letter elements. We will write ExtBP∗BP(BP∗, M) as Ext(M) for short.

Definition 7. [5, Section 1.3] Denote the idea (p, v1, · · · , vn−1) ⊂ BP∗ by In. The
short exact sequence

0→ BP∗/I∞n → BP∗/I∞n−1[v−1
n−1]→ BP∗/I∞n−1 → 0

induces a long exact sequence in Ext groups. Denote the boundary map by

δn : Exts(BP∗/I∞n )→ Exts+1(BP∗/I∞n−1).

Suppose that x = v in
n /(pi0 , v i1

1 ), · · · , v
in−1

n−1 + · · · (we only write the leading term) is

an element in Ext0(BP∗/I∞n ), then

α
(n)
in/in−1,··· ,i0 := δ1 ◦ δ2 ◦ · · · ◦ δnx

where α(n) is the nth Greek letter. When i0 = 1, we omit it from the notation.

Example 8. α family and β family.

βi/j ∈ Ext2,6i−2j
BP∗BP

(BP∗, BP∗).

Fact 9. In the bidegree of θj , there is only one class h2
j in the classical Adams

spectral sequence. However, in the ANSS, there are more than one elements. For
example, in the bidegree of θ4, there are β8/8, β6/2 and α1α2j−1 ([6, Section 7.1]).
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The first two lines of the ANSS have been studied in [4]. We follow notations in
[6] to describe classes in ANSS in the bidegree of θj as follows:

βc(j ,k)/2j−1−2k ;

α1α2j−1

where 0 6 k < j and c(j , k) = 2j−1−2k(1 + 22k+1)/3.

2 Formal A-modules

Follow the notations in [2, Section 11.2]. Let A and R be commutative rings, and
e : A→ R a ring homomorphism.

Definition 10. [5, A2.1.1] A (commutative 1-dimensional) formal group law over
R is a power series F (x , y) ∈ R[[x , y ]] satisfying

1. F (x , 0) = F (0, x) = x ,

2. F (x , y) = F (y , x),

3. F (x , F (y , z)) = F (F (x , y), z).

Definition 11. [5, A2.1.5] Let F and G be formal group laws. A homomorphism
from F to G is a power series f (x) ∈ R[[x ]] with constant term 0 such that

f (F (x , y)) = G (f (x), f (y)).

It is an isomorphism if it is invertible, i.e., if f ′(0) (the coefficient of x) is a unit
in R, and a strict isomorphism if f ′(0) = 1. A strict isomorphism from F to the
addition formal group law x + y is a logarithm for F , denoted by logF (x).

We have a ring homomorphism

Z→ End(F )

n→ [n](x)

where [1](x) = x and [n + 1](x) = F (x , [n](x)).

Definition 12. A formal A-module over R is a formal group law F over R, equipped
with a ring homomorphism

A→ End(F )

a→ [a](x)

with the property that [a]′(0) = e(a).
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We are interested in the case A = Z2[ζ] where ζ is a primitive 8th root of
unity and R∗ = A[u, u−1] where |u| = 2. The maximal ideal of A is generated
by π = ζ − 1. A is a discrete valuation ring. The valuation can be given by the
divisibility of π. For example, 2 is π4·unit in A.

Given a power series f (x) ∈ A[[x ]] such that

f (x) = πx mod(x2)

f (x) = x2 mod(π),

Lubin and Tate’s work [3] constructed a formal A-module Ff over A (unique up to
isomorphism) such that

[π](x) = f (x).

For a ∈ A, write
[a](x) = adxd + · · · mod(π)

with 0 6= ad ∈ A/(π) One can check that the function v(a) = logq(d) defines a
valuation on A. For example, v(π) = 1, v(2) = 4. We can define a homogeneous
formal group law over a graded ring by setting |x | = |y | = −2. From a formal
group law Ff , we can define a homogeneous formal group law F over R∗ by

uF (x , y) = Ff (ux , uy).

3 Group actions and the ANSS [2, 11.3.2, 11.3.3]

Let MFG be the category of pairs (R, F ), with F a formal group law over a com-
mutative ring R, and in which a morphism

(f ,ψ) : (R1, F1)→ (R2, F2)

consists of a ring homomorphism f : R1 → R2, and an isomorphism of formal group

laws ψ : F2
∼=−→ f∗F1. A (left) action of a group on (R, F ) is a map of monoids

G →MFG ((R, F ), (R, F )).

We define a trivial C8 = 〈γ〉 action on A. Then C8 acts on the pair (A, Ff ) by

fγ : A
id−→ A,

ψγ = [ζ](x) : Ff → f∗Ff = Ff .

The C8 = 〈γ〉 action can be extended to (R∗, F ) by

γu = ζu.

Example 13. [2, Example 11.18] Here is an example of (R, F ) with G action.
Suppose that E is a complex oriented, homotopy commutative ring spectrum, and
that a finite group G acts on E by homotopy multiplicative maps. Let F denote
the corresponding (homogeneous) formal group law over π∗E . Then the action of
G on E∗(CP∞) gives an action of G on (π∗E , F ).
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One can associate a Hopf algebroid to a pair (R, F ) with G action. Let C (G , R∗)
be the ring of maps (as set) from G to R∗. (In our case, G is C8 and R∗ =
Z2[ζ][u, u−1].) The pair (R∗, C (G ; R∗)) is a Hopf algebroid. The structure maps
are

ηL : R∗ → C (G ; R∗)

sending r ∈ R∗ to the constant function with value r ;

ηR : R∗ → C (G ; R∗)

sending r ∈ R∗ to the function g → g · r ;

∆: C (G ; R∗)→ C (G ; R∗) ⊗
R∗

C (G ; R∗),

the composition of the map

C (G ; R∗)→ C (G × G ; R∗)

dual to multiplication in G , and the isomorphism

C (G ; R∗) ⊗
R∗

C (G ; R∗)
∼=−→ C (G × G ; R∗)

given by setting
(f1 ⊗ f2)(g1, g2) = f1(g1) · g1f2(g2).

Moreover, there is a map of Hopf algebroids

(MU∗, MU∗MU)→ (R∗, C (G ; R∗)) (1)

where the map MU∗ → R∗ classifies the formal group law F , and the map MU∗MU →
C (G , R∗) is defined by declaring the composition

MU∗MU → C (G , R∗)
evg−−→ R∗

to be the map classifying the strict isomorphism

[g ](x) : F → g∗F .

(Here we use the fact that MU∗MU represents strict isomorphism between formal
group laws. A map MU∗MU → R is equivalent to a strict isomorphism between F1

and F2.)
The map 1 induces a map

Exts,t
MU∗MU(MU∗, MU∗)→ Hs(G ; Rt). (2)

When the G -action on (R∗, F ) arises, as in Example 13, from an action of G on a
complex oriented homotopy commutative ring spectrum E , the map 2 is the E2-term
of a map of spectral sequences abutting to the homomorphism π∗S

0 → π∗E
hG (see

details in [2, 11.3.3]).
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