
Cohomology Theories and Naive Spectra

Yunze Lu

August 13, 2019

1 Introduction

We will review Eilenberg-Steenrod axioms for cohomology. We construct Eilenberg-MacLanes spaces,
which represent cohomology theories. This leads to naive Ω-spectra and Brown representability.

2 Axiomatic cohomology

In this section we review Eilenberg-Steenrod axioms for cohomology theories.

A cohomology theory E consists of Z-graded contravariant functors En, from the category of pairs of
CW complexes to the category of abelian groups, and natural transformations δ : En(A) := En(A,∅)⇒
En+1(X , A), such that:

• Exactness. The following sequence is exact:

...→ En(X , A)→ En(X )→ En(A)→ En+1(X , A)→ ...

• Homotopy. If f : (X , A)→ (Y , B) is a homotopy equivalence, then

f ∗ : En(Y , B)
∼=−→ En(X , A).

• Excision. If X is the union of subcomplexes A and B, then the inclusion (A, A ∩ B) → (X , B)
induces an isomorphism

En(X , B)
'−→ En(A, A∩ B).

• Additivity. If (X , A) = äi (Xi , Ai ), then

En(X , A)
∼=−→∏

i

En(Xi , Ai ).

Conventionally, if En(∗) = 0 for n 6= 0, we call E an ordinary cohomology theory.

There is a based variant: a reduced cohomology theory consists of Z-graded functors Ẽn, from the
category of based CW complexes to the category of abelian groups, and natural isomorphisms

δ : Ẽn(X )
∼=−→ Ẽn+1(ΣX ),

such that:
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• Exactness. If A is a subcomplex of X then the following sequence is exact:

Ẽn(X /A)→ Ẽn(X )→ Ẽn(A).

• Homotopy. If f ' g : X → Y are based homotopic, then f ∗ = g∗.
• Wedge. If X =

∨
i Xi , then

Ẽn(X )
∼=−→∏

i

Ẽn(Xi ).

In this context the dimension axiom reads as Ẽn(S0) = 0 for n 6= 0.

The relation between reduced and unreduced cohomology is the following:

Ẽ ∗(X ) = E ∗(X , ∗), E ∗(X ) = E ∗(X+), E ∗(X , A) = Ẽ ∗(X /A).

Example. Cellular/singular cohomology theory HG .
Example. Ordinary cohomology of Sn.

Cup product and homology.

3 Eilenberg-MacLane spaces

Given n > 0 and a discrete group G , the Eilenberg-MacLane space K (G , n), is characterized by the
following property: πnK (G , n) = G , while πkK (G , n) = 0 for k 6= n. Of course if n > 1 we require
that G is abelian.

One way to construct Eilenberg-MacLanes spaces is by attaching cells. Say n ≥ 1. Present G with
generators and relations:

G = 〈g1, ..., gα/r1, ..., rβ〉.

The homotopy group πn(∨iSn
i ) is free abelian with α generators. Each relation ri is represented by a

based map Sn → ∨iSn
i . One could attach a (n + 1)-cell via this attaching map to realize the relation

ri . The result is a space X with trivial homotopy groups πi (X ) for i < n and πn(X ) = G .
The same method could be used to kill all higher homotopy groups. Starting with πn+1, we attach

(n + 2)-cells via attaching maps Sn+1 → X that generate πn+1, and this won’t affect lower homotopy
groups. This finishes the construction.

Eilenberg-MacLane spaces are unique up to weak homotopy equivalence, some examples are

K (Z, 1) ' S1, K (Z/2, 1) ' RP∞, K (Z, 2) ' CP∞.

Eilenberg-MacLane spaces represent cohomology theories. Recall that [X , Y ] denotes the set of
based homotopy classes of maps between X and Y , and π0F (X , Y ) = [X , Y ]. The construction above
reveals that Eilenberg-MacLane spaces are naturally based.

Theorem. For CW complexes X , abelian groups G , and integers n ≥ 0, there are natural isomor-
phisms

H̃n(X ; G ) ∼= [X , K (G , n)].

It is not hard to prove that for any based space Z , the functor [−, Z ] from based CW complexes
to pointed sets satisfies Homotopy, Exactness and Wedge conditions given in the Eilenberg-Steenrod
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axioms for reduced cohomology theory. For the functor to take value in Abelian groups, we have to
impose more structures on Z , for example if Z is a double loop space. Milnor proved that the loop space
of a CW complex has the homotopy type of a CW complex. Hence we have a homotopy equivalence

σ̃n : K (G , n)→ ΩK (G , n + 1).

By iterating, Eilenberg-MacLane spaces are infinity loop spaces.

An Ω-spectrum is a sequence of based spaces En, n ≥ 0, and based weak homotopy equivalences
σ̃ : En → ΩEn+1. For an abelian group G , the Eilenberg-MacLane spectrum is {K (G , n), σ̃n}.

Proposition. Let E = {En} be an Ω-spectrum. Define

Ẽn(X ) =

{
[X , En] if n ≥ 0
[X , Ω−nE0] if n < 0.

(3.1)

Then the functors Ẽn define a reduced cohomology theory on based CW complexes. We only need to
verify the suspension isomorphism, which is induced my σ̃:

Ẽn(X ) = [X , En]→ [X , ΩEn+1] ∼= [ΣX , En+1] = Ẽn+1(ΣX ).

Now we have proved the theorem.
Cohomology could as well be generated to the ∞-categorical setting. The idea is that: given an

∞-category C. For two objects X , A of C, the degree 0 cohomology of X with coefficients in A, is the
set of connected components of the hom space C(X , A).

We shall see Eilenberg-Maclane spaces also produce ordinary homology theories. By adjunction
[ΣX , Y ] ∼= [X , ΩY ], σ̃n : K (G , n)→ ΩK (G , n + 1) corresponds to map

σn : ΣK (G , n)→ K (G , n + 1).

We may smash with a based CW complex X to obtain

πn+k (X ∧K (G , n)))
Σ−→ πn+k+1(X ∧ ΣK (G , n))

(Id∧σn)∗−−−−−→ πn+k+1(X ∧K (G , n + 1)).

Theorem. For based CW complexex X , abelian groups G , and integers n ≥ 0, there are natural
isomorphisms

H̃k (X , G ) ∼= colimnπn+k (X ∧K (G , n)).

A spectrum is a sequence of based spaces En, n ≥ 0, and based maps σn : ΣEn → En+1. Given
nice conditions, one expect similar results. But we won’t go into details here. You will see an example
at the beginning of next talk.

Now we build the Eilenberg-MacLane spaces into the construction of Postnikov towers which can be
expressed as tower of fibrations with Eilenberg-MacLane spaces as fibers. We say a topological space is
n-truncated if the homotopy groups of X vanish in dimensions larger than n. Recall that the Postnikov
tower of path-connected X , is a sequence of spaces

X → ...→ Xn
pn−→ Xn−1...→ X1

p1−→ X0

such that
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(1). πi (Xn) ∼= πi (X ) for i ≤ n,
(2). Xn is n-truncated, i.e., πi (Xn) = 0 for i > n.
We could construct a Postnikov tower by attaching cells when X is a CW complex. The Postnikov

tower, if it exists, is unique up to homotopy.

Furthermore, one could successively replace each map pn by a fibration: given a map f : X → Y ,
define the path space Nf = X ×f Y I . Nf consists of pairs (x , γ) such that f (x) = γ(0). Now f could
be decomposed as

X
ν−→ Nf

p−→ Y ,

where ν(x) = (x , γf (x)) and ρ(x , γ) = γ(1). It is not hard to check that Nf deformation retracts to X
and p is a fibration.

By examining the homotopy long exact sequence, the new map p′n is a fibration with fiber K (πn(X ), n).
One recovers the space X by taking the homotopy limit of the tower. This kind of tower resolution
construction is both theoretically and computationally important.

4 Brown Representability

On the other hand, the representability of ordinary cohomology is a consequence of a general result
called the Brown representability theorem.

Recall that if C is a category and F : Cop → Set is said to be representable if there exists X ∈ C

and an isomorphism F → HomC(−, X ).
There is a notion of presentable categories, as well as a notion of presentable ∞-categories.

Proposition. Let C be a presentable category, and F : Cop → Set be a functor. F is representable
if and only if F preserves limits.

Proposition. Let C be a presentable ∞-category, and F : Cop → S be a functor. F is representable
if and only if F preserves small limits.

There are also nice criteria (Adjoint Functor Theorem) to determine whether a functor between
presentable (∞-)categories has left/right adjoints. As an example, the n-truncation functor is the left
adjoint of the inclusion of ∞-category of n-trucated spaces into S .

A contravariant functor from the homotopy category of based connected CW complexes to the
category of pointed sets is called a Brown functor if it satisfies the following conditions:

(1). it takes coproducts to products,
(2). it takes weak pushouts to weak pullbacks.
Theorem. (Brown representability) Brown functors are representable. Every reduced cohomology

theory on the category of based CW complexes is represented by an Ω-spectrum.
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