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The goal of this talk is to sketch the proof of the detection theorem:

Theorem 1. [1, Theorem 11.1] If 0; € mo1_»S° is an element of Kervaire invariant
1, and j > 2, then the image of 0; in myi+1_»§2 is non-zero.

The spectral sequences reduce the problem to an algebraic one. We will prove
the algebraic detection theorem.

Theorem 2. ([I, Theorem 11.2]) If
x € Ext?2, (MU, MU,)
is any element mapping to
e Ext¥?"(2/2,2/2)

in the Ex-term of the classical Adams spectral sequence, and j > 2, then the image
of x in H*(Gg; 75.:Q0) is nonzero.

We follow the proof in [2], which is the proof in their preprint of August 26,
2009. The formal A-module constructions reduce the coefficients TS Qo to a much
simpler ring R, = Z»[(][u, u™!]. We show that the image of x as above is nonzero
in the composition

Ext22) (MU, MU,) — H?(Cg; 74:Q0) — H?(Cs; Ryn), (1)

which sends t; to a R,-valued function on Cg determined by

F

€160 = 3 a(€)(€x)?. (2)

i>0

1. Step 1: Construct maps in[I]and show that the composition is induced by the
map of Hopf algebroids

(MU, MU.MU) — (R., C(Gs; R.));

2. Step 2: Check the image of all such x in H2(Cg; Ryjt1).



We have seen maps
Ext?2, iy (MU., MU,) — H*(Cg; 74.:Q0),

Ext?2, i (MU., MU,) — H*(Cg; R.).
For step 1, we need to proof the following lemma.

Lemma 3. [2, 7.3 Lemma 2] The classifying homomorphism for F
A: m(MU) = R,
factors through W*(MUﬂ(s)) in such a way that
1. the homomorphism \*): 7r*(/\/lUﬂ(s)) — R, Is equivariant;
2. the element D € W*(MUD({”) that we invert to get Qq goes to a unit in R,.

For the first statement, a homomorphism A4 w*(MUﬂ({l)) — R, is equivalent
to the data ] . .
| R N

where F; are formal group laws over R, and f; are strict isomorphisms. Recall the
Cg action on /\/IUD(gl) is given by C; permutation and the G, action on MUg. An Cg
equivariant map is equivalent to a formal Z[(]-module structure on F;. We start
with a formal Z[¢] module, hence we have the equivariant map.

The second part needs explicit computation. We will come back to it later. A
remark is that the choice of D is the smallest one such that its image is a unit in
R..

Before going into the tricky computation in step 2, we start with a warm up in
the baby case:

Example 4. We will do a detection theorem: KO detects the first Hopf invariant
one element 1. Here is the baby algebraic detection theorem:

Claim 5. If
x € Extyy. pu(MU,, MU,)

is any element mapping to
h € Ext}{3(2/2,7,/2)

in the Ey-term of the classical Adams spectral sequence, then the image of x in
H?(Cy; . KU) is nonzero.

We will work at prime 2. One can replace MU by BP, KU by KUS. One should
work with 2-typical formal group laws over Zy). Here we are not very careful
to these details (one can show the coefficient of x? in [—1] is the same for the
multiplicative formal group law and its 2-typicalization). Recall that on the E, page



of ANSS, in the degree of ), there is only one nontrivial class 1, and under the
Thom reduction a; ~ t; — &2 ~ hy. The map

Ext?(Z/2,2/2) — H*(C,, maKU)
is induced by the map of Hopf algebroid
(MU,, MU.MU) — (KU, C(G, KU,)),

where the map MU, — KU, classifies the multiplicative formal group law F(x,y) =
x +y + uxy over KU, = Z[u,u™1]. Let ~ be the generator of C,. ~ acts on F
by [~1]¢(x). Then the image of t; sends v to the coefficients of x* in [—1]¢(x).
From
F(x, [-1]r(x)) =0,

one can solve that [—1]g(x) = —x+ ux®>+ -+ and t1() is a unit. So the image of
t1 is nontrivial in C(Cy, KU,). Recall that H*(C,, KU,) is the cohomology of the
complex (cobar resolution)

KU, = C(G, KU,) = C(G x G, KU,) — -+ -
In inner degree 2, C, acts by —1 on KU, so the first map for a € KU,
a—(y:a—a—na)
is multiplication by 2 (ya = —a). If the image of t; is a unit in C(C, KU,),
not divided by 2, then it will not be in the image of dy and represent a nonzero

cohomology class. On the other hand, H*(C,, KU,) is the cohomology of the
complex (minimal resolution)

KU, =% ku, 2 ku, 225

We have HY(C,, KUy) = KU, /2 = Z/2. This shows that o maps to the nonzero
element in HY(Gy, KUs) = Z/2.

We now sketch the proof of step 2. Recall that on the E, page of ANSS, in the
bidegree of 0;, there are

Bej k) j2i-1-2¢;
Q1Qoi_1
where 0 < k < j and c(j, k) = 27172K(1 + 22k*1) /3. Under the Thom reduction,

everything goes to 0, except [y-1/j-1 goes to hf. Hence, the candidates of x

is Bpi-1/5i-1 plus a linear combination of the rest classes. We will show that in
Hz(Cs; R2j+1)

1. Boi-1/5-1 has a nontrivial image;

2. the rest goes to zero.



We compute H?(Cg; Ry+1) as the cohomology of the cochain complex

R.[Cs] 1=5 R.[Gg] 247 RG] 25 -
Recall the Cg = (7) action on R, = A[{] is given by

vya=aforacA,

yu = &u.

When j > 3, Gg acts trivially on Ry and H?(Cg; Ry1) = u? A/(8). We can
define a valuation on A by the divisibility of 7. Note that 7* = 2-unit. If we assign
v(m) = 1, then v(2) = 4. This can be extended to a valuation on R, by setting
v(u) = 0. To check the image of the rest goes to 0, it is enough to show their
images have valuation greater than v(8) = 12.

We will fix the formal A-module F over R, = A[u, u~1] with logarithm

U2 71X2

logr(x) = >

n>0

This will give concrete formulas for the map of Hopf algebroids (the formula for v,
is basic algebra but very complicated)

(BP,, BP,BP) — (R,, C(Cs, R.)).

In particular, v, goes to 7*~"u?"~L.unit for 1 < n < 4. When n > 4, v, goes to a
unit. Hence, we can assign valuation v(v,) =max(0,4 — n). It is doable but painful
to find the cocycle of 3;/;. However, the valuation will not decrease in the process.

Hence, we have a lower bound of the valuation from the leading term v2’/v{ When
J = 6, all Be(jkyjai—1-2« # Boi-1/5i-1 have valuation at least 20. Therefore, they

are zero in u” A/(8). Now we check the image of Bai~12i-1. We calculate with
BP-theory. Recall that

BP.BP = BP,[t1, ta, - - - | where |t,| =2(2" — 1).
It is known that (-1 i-1 is cohomologous to
1 2 P it
b= Z | (i>[t1|t1 ] € Ext*? .
0<i<2

The image of t, under BP,BP — C(Cg, R.) can be solved from

F

[C1() =D tal )X

n=0

In particular, the function t; sends a primitive root in Cg to a unit in R,. Further
computation shows that b;_; goes to 4y% unit.



Remark 6. The image of bj_; is divided by 4 and bj_, is of order 2. This is a hint
that one wants to work with the group Cg.

In the end, we come back to the second part of Lemma [3] The choice of D
is based on computation of /\(4)(r2"k’_1) for various H and k and then choose the

smallest one. Here we list some results of r2€471.

MO = (=1 = 2)u =7 - unit - u
A (r£4) = (87° 4 267 + 257 — 1)u® = unit -
Cy

We see that r3* is the first one that maps to a unit. The same happens for rlcs2 and
the formula is very complicated.

A (r2) = (3063471347% — 370032056372 — 1515876646971 — 16204677587)u'®.
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