the Detection Theorem

Guchuan Li

August 17, 2019

The goal of this talk is to sketch the proof of the detection theorem:
Theorem 1. [1, Theorem 11.1] If $\theta_{j} \in \pi_{2^{j+1}-2} S^{0}$ is an element of Kervaire invariant 1 , and $j>2$, then the image of θ_{j} in $\pi_{2^{j+1}-2} \Omega$ is non-zero.

The spectral sequences reduce the problem to an algebraic one. We will prove the algebraic detection theorem.

Theorem 2. ([1, Theorem 11.2]) If

$$
x \in \operatorname{Ext}_{M U_{*} M U}^{2,2^{j+1}}\left(M U_{*}, M U_{*}\right)
$$

is any element mapping to

$$
h_{j}^{2} \in \operatorname{Ext}_{\mathcal{A}}^{2,2^{j+1}}(\mathbb{Z} / 2, \mathbb{Z} / 2)
$$

in the E_{2}-term of the classical Adams spectral sequence, and $j>2$, then the image of x in $H^{2}\left(C_{8} ; \pi_{2^{j+1}}^{u} \Omega_{\mathbb{O}}\right)$ is nonzero.

We follow the proof in [2], which is the proof in their preprint of August 26, 2009. The formal A-module constructions reduce the coefficients $\pi_{2^{j+1}}^{u} \Omega_{\mathbb{O}}$ to a much simpler ring $R_{*}=\mathbb{Z}_{2}[\zeta]\left[u, u^{-1}\right]$. We show that the image of x as above is nonzero in the composition

$$
\begin{equation*}
\operatorname{Ext}_{M U_{*} M U}^{2,2^{j+1}}\left(M U_{*}, M U_{*}\right) \rightarrow H^{2}\left(C_{8} ; \pi_{2^{j+1}}^{U} \Omega_{\mathbb{O}}\right) \rightarrow H^{2}\left(C_{8} ; R_{2^{j+1}}\right), \tag{1}
\end{equation*}
$$

which sends t_{i} to a R_{*}-valued function on C_{8} determined by

$$
\begin{equation*}
[\xi](x)=\sum_{i \geqslant 0}^{F} t_{i}(\xi)(\xi x)^{2^{i}} \tag{2}
\end{equation*}
$$

1. Step 1: Construct maps in 1 and show that the composition is induced by the map of Hopf algebroids

$$
\left(M U_{*}, M U_{*} M U\right) \rightarrow\left(R_{*}, C\left(C_{8} ; R_{*}\right)\right) ;
$$

2. Step 2: Check the image of all such x in $H^{2}\left(C_{8} ; R_{2^{j+1}}\right)$.

We have seen maps

$$
\begin{gathered}
\operatorname{Ext}_{M U_{*} M U}^{2,2^{j+1}}\left(M U_{*}, M U_{*}\right) \rightarrow H^{2}\left(C_{8} ; \pi_{2^{j+1}}^{u} \Omega_{\mathbb{O}}\right) \\
\quad \operatorname{Ext}_{M U_{*}, M U}^{2,2^{j+1}}\left(M U_{*}, M U_{*}\right) \rightarrow H^{2}\left(C_{8} ; R_{*}\right)
\end{gathered}
$$

For step 1, we need to proof the following lemma.
Lemma 3. [2, 7.3 Lemma 2] The classifying homomorphism for F

$$
\lambda: \pi_{*}(M U) \rightarrow R_{*}
$$

factors through $\pi_{*}\left(M U_{\mathbb{R}}^{(4)}\right)$ in such a way that

1. the homomorphism $\lambda^{(4)}: \pi_{*}\left(M U_{\mathbb{R}}^{(4)}\right) \rightarrow R_{*}$ is equivariant;
2. the element $D \in \pi_{*}\left(M U_{\mathbb{R}}^{(4)}\right)$ that we invert to get $\Omega_{\mathbb{O}}$ goes to a unit in R_{*}.

For the first statement, a homomorphism $\lambda^{(4)}: \pi_{*}\left(M U_{\mathbb{R}}^{(4)}\right) \rightarrow R_{*}$ is equivalent to the data

$$
F_{1} \xrightarrow{f_{1}} F_{2} \xrightarrow{f_{2}} F_{3} \xrightarrow{f_{3}} F_{4}
$$

where F_{i} are formal group laws over R_{*} and f_{i} are strict isomorphisms. Recall the C_{8} action on $M U_{\mathbb{R}}^{(4)}$ is given by C_{4} permutation and the C_{2} action on $M U_{\mathbb{R}}$. An C_{8} equivariant map is equivalent to a formal $\mathbb{Z}[\zeta]$-module structure on F_{i}. We start with a formal $\mathbb{Z}_{2}[\zeta]$ module, hence we have the equivariant map.

The second part needs explicit computation. We will come back to it later. A remark is that the choice of D is the smallest one such that its image is a unit in R_{*}.

Before going into the tricky computation in step 2, we start with a warm up in the baby case:

Example 4. We will do a detection theorem: $K O$ detects the first Hopf invariant one element η. Here is the baby algebraic detection theorem:

Claim 5. If

$$
x \in \operatorname{Ext}_{M U_{*} M U}^{1,2}\left(M U_{*}, M U_{*}\right)
$$

is any element mapping to

$$
h_{1} \in \operatorname{Ext}_{\mathcal{A}}^{1,2}(\mathbb{Z} / 2, \mathbb{Z} / 2)
$$

in the E_{2}-term of the classical Adams spectral sequence, then the image of x in $H^{2}\left(C_{2} ; \pi_{*} K U\right)$ is nonzero.

We will work at prime 2. One can replace $M U$ by $B P, K U$ by $K U_{2}^{\wedge}$. One should work with 2-typical formal group laws over $\mathbb{Z}_{(2)}$. Here we are not very careful to these details (one can show the coefficient of x^{2} in $[-1]$ is the same for the multiplicative formal group law and its 2-typicalization). Recall that on the E_{2} page
of ANSS, in the degree of η, there is only one nontrivial class α_{1}, and under the Thom reduction $\alpha_{1} \sim t_{1} \rightarrow \xi_{1}^{2} \sim h_{1}$. The map

$$
\operatorname{Ext}_{\mathcal{A}}^{1,2}(\mathbb{Z} / 2, \mathbb{Z} / 2) \rightarrow H^{1}\left(C_{2}, \pi_{2} K U\right)
$$

is induced by the map of Hopf algebroid

$$
\left(M U_{*}, M U_{*} M U\right) \rightarrow\left(K U_{*}, C\left(C_{2}, K U_{*}\right)\right)
$$

where the map $M U_{*} \rightarrow K U_{*}$ classifies the multiplicative formal group law $F(x, y)=$ $x+y+u x y$ over $K U_{*}=\mathbb{Z}\left[u, u^{-1}\right]$. Let γ be the generator of $C_{2} . \gamma$ acts on F by $[-1]_{F}(x)$. Then the image of t_{1} sends γ to the coefficients of $x^{2^{1}}$ in $[-1]_{F}(x)$. From

$$
F\left(x,[-1]_{F}(x)\right)=0,
$$

one can solve that $[-1]_{F}(x)=-x+u x^{2}+\cdots$ and $t_{1}(\gamma)$ is a unit. So the image of t_{1} is nontrivial in $C\left(C_{2}, K U_{*}\right)$. Recall that $H^{*}\left(C_{2}, K U_{*}\right)$ is the cohomology of the complex (cobar resolution)

$$
K U_{*} \rightarrow C\left(C_{2}, K U_{*}\right) \rightarrow C\left(C_{2} \times C_{2}, K U_{*}\right) \rightarrow \cdots
$$

In inner degree 2, C_{2} acts by -1 on $K U_{2}$, so the first map for $a \in K U_{2}$

$$
a \rightarrow(\gamma: a \rightarrow a-\gamma a)
$$

is multiplication by $2(\gamma a=-a)$. If the image of t_{1} is a unit in $C\left(C_{2}, K U_{*}\right)$, not divided by 2 , then it will not be in the image of d_{1} and represent a nonzero cohomology class. On the other hand, $\mathrm{H}^{*}\left(C_{2}, K U_{*}\right)$ is the cohomology of the complex (minimal resolution)

$$
K U_{*} \xrightarrow{\gamma-1} K U_{*} \xrightarrow{\gamma+1} K U_{*} \xrightarrow{\gamma-1} \cdots .
$$

We have $H^{1}\left(C_{2}, K U_{2}\right)=K U_{2} / 2=\mathbb{Z} / 2$. This shows that α maps to the nonzero element in $H^{1}\left(C_{2}, K U_{2}\right)=\mathbb{Z} / 2$.

We now sketch the proof of step 2. Recall that on the E_{2} page of ANSS, in the bidegree of θ_{j}, there are

$$
\begin{gathered}
\beta_{c(j, k) / 2^{j-1-2 k}} ; \\
\alpha_{1} \alpha_{2^{j}-1}
\end{gathered}
$$

where $0 \leqslant k<j$ and $c(j, k)=2^{j-1-2 k}\left(1+2^{2 k+1}\right) / 3$. Under the Thom reduction, everything goes to 0 , except $\beta_{2^{j-1} / 2^{j-1}}$ goes to h_{j}^{2}. Hence, the candidates of x is $\beta_{2^{j-1} / 2^{j-1}}$ plus a linear combination of the rest classes. We will show that in $H^{2}\left(C_{8} ; R_{2^{j+1}}\right)$

1. $\beta_{2^{j-1} / 2^{j-1}}$ has a nontrivial image;
2. the rest goes to zero.

We compute $H^{2}\left(C_{8} ; R_{2^{j+1}}\right)$ as the cohomology of the cochain complex

$$
R_{*}\left[C_{8}\right] \xrightarrow{\gamma-1} R_{*}\left[C_{8}\right] \xrightarrow{1+\gamma+\cdots+\gamma^{7}} R_{*}\left[C_{8}\right] \xrightarrow{\gamma-1} \cdots
$$

Recall the $C_{8}=\langle\gamma\rangle$ action on $R_{*}=A[\xi]$ is given by

$$
\begin{gathered}
\gamma a=a \text { for } a \in A, \\
\gamma u=\xi u .
\end{gathered}
$$

When $j \geqslant 3, C_{8}$ acts trivially on $R_{2^{j+1}}$ and $H^{2}\left(C_{8} ; R_{2^{j+1}}\right)=u^{2^{j}} A /(8)$. We can define a valuation on A by the divisibility of π. Note that $\pi^{4}=2 \cdot$ unit. If we assign $v(\pi)=1$, then $v(2)=4$. This can be extended to a valuation on R_{*} by setting $v(u)=0$. To check the image of the rest goes to 0 , it is enough to show their images have valuation greater than $v(8)=12$.

We will fix the formal A-module F over $R_{*}=A\left[u, u^{-1}\right]$ with logarithm

$$
\log _{F}(x)=\sum_{n \geqslant 0} \frac{u^{2^{n}-1} x^{2^{n}}}{\pi^{n}}
$$

This will give concrete formulas for the map of Hopf algebroids (the formula for v_{n} is basic algebra but very complicated)

$$
\left(B P_{*}, B P_{*} B P\right) \rightarrow\left(R_{*}, C\left(C_{8}, R_{*}\right)\right)
$$

In particular, v_{n} goes to $\pi^{4-n} u^{2^{n}-1}$. unit for $1 \leqslant n \leqslant 4$. When $n \geqslant 4, v_{n}$ goes to a unit. Hence, we can assign valuation $v\left(v_{n}\right)=\max (0,4-n)$. It is doable but painful to find the cocycle of $\beta_{i / j}$. However, the valuation will not decrease in the process. Hence, we have a lower bound of the valuation from the leading term v_{2}^{i} / v_{1}^{j}. When $j \geqslant 6$, all $\beta_{c(j, k) / 2^{j-1-2 k}} \neq \beta_{2^{j-1} / 2^{j-1}}$ have valuation at least 20. Therefore, they are zero in $u^{2^{j}} A /(8)$. Now we check the image of $\beta_{2^{j-1} / 2^{j-1}}$. We calculate with $B P$-theory. Recall that

$$
B P_{*} B P=B P_{*}\left[t_{1}, t_{2}, \cdots\right] \text { where }\left|t_{n}\right|=2\left(2^{n}-1\right)
$$

It is known that $\beta_{2^{j-1} / 2^{j-1}}$ is cohomologous to

$$
b_{j-1}=\frac{1}{2} \sum_{0<i<2^{j}}\binom{2^{j}}{i}\left[t_{1}^{i} \mid t_{1}^{2^{j}-i}\right] \in \mathrm{Ext}^{2,2^{j+1}}
$$

The image of t_{n} under $B P_{*} B P \rightarrow C\left(C_{8}, R_{*}\right)$ can be solved from

$$
[\zeta](x)=\sum_{n \geqslant 0}^{F} t_{n}(\zeta) x^{2 n}
$$

In particular, the function t_{1} sends a primitive root in C_{8} to a unit in R_{*}. Further computation shows that b_{j-1} goes to $4 u^{2 j}$. unit.

Remark 6. The image of b_{j-1} is divided by 4 and b_{j-1} is of order 2. This is a hint that one wants to work with the group C_{8}.

In the end, we come back to the second part of Lemma 3 The choice of D is based on computation of $\lambda^{(4)}\left(r_{2^{k}-1}^{H}\right)$ for various H and k and then choose the smallest one. Here we list some results of $r_{2^{k}-1}^{C_{4}}$.

$$
\begin{gathered}
\lambda^{(4)}\left(r_{1}^{C_{4}}\right)=(-\pi-2) u=\pi \cdot \text { unit } \cdot u \\
\lambda^{(4)}\left(r_{3}^{C_{4}}\right)=\left(8 \pi^{3}+26 \pi^{2}+25 \pi-1\right) u^{3}=\text { unit } \cdot u^{3}
\end{gathered}
$$

We see that $r_{3}^{C_{4}}$ is the first one that maps to a unit. The same happens for $r_{15}^{C_{2}}$ and the formula is very complicated.

$$
\lambda^{(4)}\left(r_{15}^{C_{2}}\right)=\left(306347134 \pi^{3}-3700320563 \pi^{2}-15158766469 \pi-16204677587\right) u^{15}
$$

References

[1] Hill, Michael A., Michael J. Hopkins, and Douglas C. Ravenel. "On the nonexistence of elements of Kervaire invariant one." Annals of Mathematics (2016): 1-262.
[2] Ravenel, Douglas C. Equivariant stable homotopy theory and the Kervaire invariant. Draft available online: http://web.math.rochester.edu/people/ faculty/doug/mybooks/esht.pdf

