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The goal of this talk is to sketch the proof of the detection theorem:

Theorem 1. [1, Theorem 11.1] If θj ∈ π2j+1−2S0 is an element of Kervaire invariant
1, and j > 2, then the image of θj in π2j+1−2Ω is non-zero.

The spectral sequences reduce the problem to an algebraic one. We will prove
the algebraic detection theorem.

Theorem 2. ([1, Theorem 11.2]) If

x ∈ Ext2,2
j+1

MU∗MU(MU∗, MU∗)

is any element mapping to

h2
j ∈ Ext2,2

j+1

A (Z/2,Z/2)

in the E2-term of the classical Adams spectral sequence, and j > 2, then the image
of x in H2(C8;πu

2j+1ΩO) is nonzero.

We follow the proof in [2], which is the proof in their preprint of August 26,
2009. The formal A-module constructions reduce the coefficients πu

2j+1ΩO to a much
simpler ring R∗ = Z2[ζ][u, u−1]. We show that the image of x as above is nonzero
in the composition

Ext2,2
j+1

MU∗MU(MU∗, MU∗)→ H2(C8;πu
2j+1ΩO)→ H2(C8; R2j+1), (1)

which sends ti to a R∗-valued function on C8 determined by

[ξ](x) =
F∑

i>0

ti (ξ)(ξx)2
i

. (2)

1. Step 1: Construct maps in 1 and show that the composition is induced by the
map of Hopf algebroids

(MU∗, MU∗MU)→ (R∗, C (C8; R∗));

2. Step 2: Check the image of all such x in H2(C8; R2j+1).
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We have seen maps

Ext2,2
j+1

MU∗MU(MU∗, MU∗)→ H2(C8;πu
2j+1ΩO),

Ext2,2
j+1

MU∗MU(MU∗, MU∗)→ H2(C8; R∗).

For step 1, we need to proof the following lemma.

Lemma 3. [2, 7.3 Lemma 2] The classifying homomorphism for F

λ : π∗(MU)→ R∗

factors through π∗(MU
(4)
R ) in such a way that

1. the homomorphism λ(4) : π∗(MU
(4)
R )→ R∗ is equivariant;

2. the element D ∈ π∗(MU
(4)
R ) that we invert to get ΩO goes to a unit in R∗.

For the first statement, a homomorphism λ(4) : π∗(MU
(4)
R ) → R∗ is equivalent

to the data
F1

f1−→ F2
f2−→ F3

f3−→ F4

where Fi are formal group laws over R∗ and fi are strict isomorphisms. Recall the

C8 action on MU
(4)
R is given by C4 permutation and the C2 action on MUR. An C8

equivariant map is equivalent to a formal Z[ζ]-module structure on Fi . We start
with a formal Z2[ζ] module, hence we have the equivariant map.

The second part needs explicit computation. We will come back to it later. A
remark is that the choice of D is the smallest one such that its image is a unit in
R∗.

Before going into the tricky computation in step 2, we start with a warm up in
the baby case:

Example 4. We will do a detection theorem: KO detects the first Hopf invariant
one element η. Here is the baby algebraic detection theorem:

Claim 5. If
x ∈ Ext1,2MU∗MU(MU∗, MU∗)

is any element mapping to

h1 ∈ Ext1,2A (Z/2,Z/2)

in the E2-term of the classical Adams spectral sequence, then the image of x in
H2(C2;π∗KU) is nonzero.

We will work at prime 2. One can replace MU by BP, KU by KU∧2 . One should
work with 2-typical formal group laws over Z(2). Here we are not very careful
to these details (one can show the coefficient of x2 in [−1] is the same for the
multiplicative formal group law and its 2-typicalization). Recall that on the E2 page
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of ANSS, in the degree of η, there is only one nontrivial class α1, and under the
Thom reduction α1 ∼ t1 → ξ21 ∼ h1. The map

Ext1,2A (Z/2,Z/2)→ H1(C2,π2KU)

is induced by the map of Hopf algebroid

(MU∗, MU∗MU)→ (KU∗, C (C2, KU∗)),

where the map MU∗ → KU∗ classifies the multiplicative formal group law F (x , y) =
x + y + uxy over KU∗ = Z[u, u−1]. Let γ be the generator of C2. γ acts on F

by [−1]F (x). Then the image of t1 sends γ to the coefficients of x21 in [−1]F (x).
From

F (x , [−1]F (x)) = 0,

one can solve that [−1]F (x) = −x + ux2 + · · · and t1(γ) is a unit. So the image of
t1 is nontrivial in C (C2, KU∗). Recall that H∗(C2, KU∗) is the cohomology of the
complex (cobar resolution)

KU∗ → C (C2, KU∗)→ C (C2 × C2, KU∗)→ · · · .

In inner degree 2, C2 acts by −1 on KU2, so the first map for a ∈ KU2

a→ (γ : a→ a− γa)

is multiplication by 2 (γa = −a). If the image of t1 is a unit in C (C2, KU∗),
not divided by 2, then it will not be in the image of d1 and represent a nonzero
cohomology class. On the other hand, H∗(C2, KU∗) is the cohomology of the
complex (minimal resolution)

KU∗
γ−1−−→ KU∗

γ+1−−→ KU∗
γ−1−−→ · · · .

We have H1(C2, KU2) = KU2/2 = Z/2. This shows that α maps to the nonzero
element in H1(C2, KU2) = Z/2.

We now sketch the proof of step 2. Recall that on the E2 page of ANSS, in the
bidegree of θj , there are

βc(j ,k)/2j−1−2k ;

α1α2j−1

where 0 6 k < j and c(j , k) = 2j−1−2k(1 + 22k+1)/3. Under the Thom reduction,
everything goes to 0, except β2j−1/2j−1 goes to h2

j . Hence, the candidates of x
is β2j−1/2j−1 plus a linear combination of the rest classes. We will show that in
H2(C8; R2j+1)

1. β2j−1/2j−1 has a nontrivial image;

2. the rest goes to zero.
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We compute H2(C8; R2j+1) as the cohomology of the cochain complex

R∗[C8]
γ−1−−→ R∗[C8]

1+γ+···+γ7

−−−−−−−→ R∗[C8]
γ−1−−→ · · · .

Recall the C8 = 〈γ〉 action on R∗ = A[ξ] is given by

γa = a for a ∈ A,

γu = ξu.

When j > 3, C8 acts trivially on R2j+1 and H2(C8; R2j+1) = u2j A/(8). We can
define a valuation on A by the divisibility of π. Note that π4 = 2·unit. If we assign
v(π) = 1, then v(2) = 4. This can be extended to a valuation on R∗ by setting
v(u) = 0. To check the image of the rest goes to 0, it is enough to show their
images have valuation greater than v(8) = 12.

We will fix the formal A-module F over R∗ = A[u, u−1] with logarithm

logF (x) =
∑
n>0

u2n−1x2n

πn
.

This will give concrete formulas for the map of Hopf algebroids (the formula for vn
is basic algebra but very complicated)

(BP∗, BP∗BP)→ (R∗, C (C8, R∗)).

In particular, vn goes to π4−nu2n−1·unit for 1 6 n 6 4. When n > 4, vn goes to a
unit. Hence, we can assign valuation v(vn) =max(0, 4− n). It is doable but painful
to find the cocycle of βi/j . However, the valuation will not decrease in the process.

Hence, we have a lower bound of the valuation from the leading term v i
2/v j

1. When
j > 6, all βc(j ,k)/2j−1−2k 6= β2j−1/2j−1 have valuation at least 20. Therefore, they

are zero in u2j A/(8). Now we check the image of β2j−1/2j−1 . We calculate with
BP-theory. Recall that

BP∗BP = BP∗[t1, t2, · · · ] where |tn| = 2(2n − 1).

It is known that β2j−1/2j−1 is cohomologous to

bj−1 =
1

2

∑
0<i<2j

(
2j

i

)
[t i1|t2

j−i
1 ] ∈ Ext2,2

j+1

.

The image of tn under BP∗BP → C (C8, R∗) can be solved from

[ζ](x) =
F∑

n>0

tn(ζ)x2n.

In particular, the function t1 sends a primitive root in C8 to a unit in R∗. Further
computation shows that bj−1 goes to 4u2j ·unit.
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Remark 6. The image of bj−1 is divided by 4 and bj−1 is of order 2. This is a hint
that one wants to work with the group C8.

In the end, we come back to the second part of Lemma 3. The choice of D
is based on computation of λ(4)(rH2k−1) for various H and k and then choose the

smallest one. Here we list some results of rC4

2k−1.

λ(4)(rC4
1 ) = (−π − 2)u = π · unit · u

λ(4)(rC4
3 ) = (8π3 + 26π2 + 25π − 1)u3 = unit · u3

We see that rC4
3 is the first one that maps to a unit. The same happens for rC2

15 and
the formula is very complicated.

λ(4)(rC2
15 ) = (306347134π3 − 3700320563π2 − 15158766469π − 16204677587)u15.
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