
BASICS OF SPECTRA

FOLING ZOU

In the previous talks, we have already studied the category Top, compactly generated
weak Hausdorff spaces.

People discovered that the suspension functor seemed to interact with the homotopy
theory, as seen in the Fraudenthal’s suspension theorem:

Theorem 0.1. If Y is pn ´ 1q-connected, then rX , Y s Ñ rΣX , ΣY s is isomorphism if
dimpX q ă 2n ´ 1 and surjection if dimpX q ď 2n ´ 1.

In particular, taking Y “ Sn, it implies that πn`kpS
nq Ñ πn`k`1pS

n`1q is an
isomorphism if k ă n ´ 1. So the limit in the definition of stable homotopy groups of
the sphere stablizes at a finite stage.

Definition 0.2. The stable homotopy groups of the sphere are πs
kpSq “ colimnπn`kpS

nq.
The stable morphisms between two spaces X and Y are rX , Y ss “ colimnrΣ

nX , ΣnY s,

Notice that the stable morphisms form an abelian group. We are interested in a
category where the morphisms are stable morphisms in Top. This category is called
spectra, or the stable homotopy category.

1. the stable category: classical

Adams, based on the work of Boardman, worked out the following point set model
of the category of spectra.

Definition 1.1. ([1, page 131,140]) A spectrum X is a sequence of pointed spaces Xn

with structure maps εn : ΣXn Ñ Xn`1. A function f : X Ñ Y of degree r between
two spectra is a sequence of maps fn : Xn Ñ Yn´r that is strictly compatible with the
structure maps.

Remark 1.2. By adjointness of Σ and Ω this is equivalent to giving maps ε1n : Xn Ñ

ΩXn`1.

Definition 1.3. X is a Ω-spectrum if all of the ε1n are homotopy equivalences.

Example 1.4. For a based space X , the suspension spectrum Σ8X is tΣnX u with the

canonical structure maps ΣΣnX
–
Ñ Σn`1X .

The suspension spectrum is usually not an Ω-spectrum. The function defined above
is too restrictive (when Y is not an Ω-spectrum) to be useful. For example, the Hopf
map does not extend to a function. So Adams came up with the “finally defined maps”:

Definition 1.5. ([1, page 142]) Consider all pairs pE 1, f 1q of a cofinal subspectrum
E 1 Ă E and a function f 1 : E 1 Ñ F . Two pairs are equivalent if they agree on a cofinal
subspectrum. A map of spectra E Ñ F is an equivalence class of the pairs.
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Definition 1.6. The category of CW-spectra Sp is defined as follows: An object is
a spectrum X as defined in Definition 1.1 whose spaces are all CW-complexes and
εn are inclusions of subcomplexes. A morphism between spectra is a map defined in
Definition 1.5.

To get the homotopy category, we need to define homotopy between maps. The
cylinder spectrum CycpE qn “ I` ^ En.

Definition 1.7. ([1, page 144]) Two maps f0, f1 : X Ñ Y are homotopic if there is a
map h : CycpX q Ñ Y such that hi0 “ f0, hi1 “ f1. The homotopy classes of maps are
deoted rX , Y s. The homotopy groups of a spectra are πkpX q “ rS

k , X s.

Remark 1.8. For a category C with a collection of weak equivalences W , the homo-
topy category of C is hopCq “ CrW´1s obtained by inverting the weak equivalences /
Bousfield localization with respect to W . For example, inverting quasi-isomorphisms in
chain complexes, we get the derived category DpZq.

The homotopy category is easier to handle when we have a model structure on C.

Here, the weak equivalences in Sp are the maps that induce π˚-isomorphisms. The
homotopy category hopSpq has the same objects as Sp and morphisms rX , Y s between
two spectrum. We have the Whithead theorem:

Theorem 1.9. ([1, Cor 3.5]) Let f : E Ñ F be a morphism between CW-spectra such
that f˚ : π˚pE q Ñ π˚pF q is an isomorphism. Then f is an equivalence in Sp.

We give some properties of hopSpq.

Theorem 1.10. ([1, Thm 3.7]) The map rX , Y s Ñ rΣX , ΣY s is a bijection.

This implies that Σ is fully-faithful, furthermore it is an equivalence of categories.

With Theorem 1.10, we can show that for a cofier sequence X
f
Ñ Y

i
Ñ Cf and any

W P Sp, there is exact sequence:

rW , X s
f˚
Ñ rW , Y s

i˚
Ñ rW , Cf s

by examining

X Y Cf ΣX

W W CW ΣW .

f i ´Σf

id

h|W

i

h

Theorem 1.11. ([1, Prop 3.11]) In hopSpq, finite coproducts are products.

This implies that hopSpq is an additive category.

Theorem 1.12. In hopSpq, a sequence X Ñ Y Ñ Z is a cofiber sequence if and only
if it is a fiber sequence.

For a commutative ring R, the derived category DpRq does not have cokernals in
general. Instead it has non-canonical mapping cones. Verdier introduced the notion of
triangulated category to axiomize this structure.

Definition 1.13. ([3, 1.1.2.5]) A triangulated category D is an additive category D
with the following data:

(1) A translation functor Σ : D Ñ D that is an equivalence of category. It is
usually written as X ÞÑ X r1s;
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(2) A collection of distinguished triangles X Ñ Y Ñ Z Ñ X r1s satisfying some
axioms (The axioms are non-trivial to give, but we omit them here).

Theorem 1.14. The stable homotopy category hopSpq is a triangulated category.

The translation functor is Σ. The distinguished triangles are the cofiber sequences.
We mention here another construction of the stable homotopy category. It is in two

steps: first invert Σ on Topfin to get the Spanier-Whitehead category of finite spectra,
then complete under colimts.

2. More Examples

The complex K-theory spectrum.

Theorem 2.1. (Bott periodicity) There is a homotopy equivalence

β : BU ˆ ZÑ Ω2BU.

Definition 2.2. The complex K-theory spectrum has spaces

Kn “

#

BU ˆ Z n even;

U n odd.

The adjoints of structure maps are given by the canonical equivalence U » ΩpBUq and
β.

Proposition 2.3. If X is a finite CW complex, rX , K s – K 0pX q. Here, K 0pX q is
the Grothendieck group of isomorphism classes of complex vector bundles over X with
direct sum.

The complex cobordism spectrum MU. Let γn be the universal bundle over
BUpnq, the classifying space of n-dimentional complex vector bundle. The inclusions
i : BUpnq Ñ BUpn`1q pulls back the universal bundle over BUpn`1q to the universal
bundle over BUpnq plus a trivial complex line bundle

i˚pγn`1q – γn ‘ 1.

Let T pnq “ Thpγnq be the Thom space, then the bundle map gives on Thom spaces

i : Σ2T pnq Ñ T pn ` 1q.

Definition 2.4. The complex cobordism spectrum MU has spaces

MUk “

#

T pnq k “ 2n;

ΣT pnq k “ 2n ` 1.

The structure maps are given by the above defined i .

3. the stable category: the 8-land

The definition of the stable 8-category is motivated by the properties of the classical
stable category.

Throughout this part let C,D be 8-categories. A triangle in C is a diagram ∆1 ˆ

∆1 Ñ C that sends p0, 1q to a zero object 0 of C, depicted as

X Y

0 Z .

f

g
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We say it is a fiber sequence if it is a pullback square; a cofiber sequence if it is a pushout
square. Note that this picture is only a simplified visualization (see [3, 1.1.1.5]). In
particular, it consists more data than the two 1-cells f , g and it is only homotopy
commutative.

Definition 3.1. [3, 1.1.1.9] An 8-category C is stable if the followings are true:

(1) It has a zero object;
(2) Every morphism admits a fiber and a cofiber;
(3) A triangle is a fiber sequence if and only if it is a cofiber sequence.

It can be shown that in a stable 8-category general pushout squares and pullback
squares are the same thing. This can be seen as the defining property by the following
proposition:

Proposition 3.2. [3, 1.1.3.4] Let C be a pointed 8-category. Then C is stable if and
only if C has all finite limits, finite colimits and that a square in C is a pushout if and
only if it’s a pullback.

Given an 8-category C, we now define the functor Σ (or dually Ω). Let MΣ be all
the pushout triangles of the form

X 01

0 Y .

Evalutating at the initial object gives a trivial fibration MΣ Ñ C. So it has a section
s. Then Σ : C Ñ C is the composite of this section with evaluating at the final object.
Conceptually Σ sends X to Y . When C is stable, pushouts and pullbacks are the same,
so that MΣ “MΩ. If follows that Σ and Ω are homotopy inverses.

Theorem 3.3. ([3, 1.1.2.14]) Let C be a stable 8-category. Then hopCq has the
structure of a triangulated category.

We remark that for an 8-category to be stable is a property, whereas a triangulation
of an additive 1-category is a structure. If it exists, a triangulated structure is (typically)
not unique, but is something that one has to choose and to remember how one has
chosen. This is difficult and easily leads to (sign) mistakes. By contrast, working with
stable 8-categories, there are no choices to be made, so this makes life much easier!

Now we construct the stable 8-category of spectra Sp. There are two perspectives,
one regarding a spectrum as a cohomology theory and the other as a homology theory.
We will use the first one to build Sp and treat the second one as a universal property.

We first take the cohomology viewpoint. Let Sfin
˚ be the 8-category of finite pointed

spaces and S˚ be the 8-category of spaces.

Definition 3.4. The 8-category Sp is the homotopy limit of ¨ ¨ ¨
Ω
Ñ S˚

Ω
Ñ S˚.

This relates back to Definition 1.1: An object in the the homotopy limit will consists

of a sequence of spaces Xn P S˚ and maps Xn
»
Ñ ΩXn`1.

Let us elaborate a little bit. For any X P Sp, the functors π0pHomSpp´, ΣrX qq
form a comology theory. However, cohomology theories via Brown representability are

only well defined as objects in hopSpq, since the homotopy equivalence Xn
»
Ñ ΩXn`1 is

defined in hopS˚q.
Next we switch to the homology viewpoint.
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Definition 3.5. For a functor F : E Ñ C between 8-categories which amdit the
following mentioned things, we say

(1) F is excisive if it sends pushout squares in E to pullback squares in C;
(2) F is reduced if it sends a final object in E to a final object in C.

Let E admit pushouts and a final object. We denote by Exc˚pE , Cq the full subcategory
spanned by reduced, excisive functors F : E Ñ C.

Definition 3.6. [3, 1.4.2.8] Let C be an 8-category with finite limits. Define the
8-category of spectrum objects in C to be:

SppCq “ Exc˚pS
fin
˚ , Cq.

An object of SppCq, or a reduced and excisive functor X : Sfin
˚ Ñ C, is called a spectrum

object in C.

It turns out that the 8-category of spectrum objects is stable:

Proposition 3.7. ([3, 1.4.2.16]) Let C,D be 8-categories such that C is pointed and
admits colimits and that D admits finite limits. Then Exc˚pC,Dq is stable.

As an example, the functor X ÞÑ ZSingpX q˚ sends homotopy pushout squares of
spaces to homotopy pullback sqaures of Kan complexes. Notice that π˚pZSingpX q‚q –

H̃˚pX ,Zq. The above claim is then equivalent to the theorem/axiom of the Mayer-
Vietoris sequence.

The stable 8-category Sp as in Definition 3.4 agrees with the 8-category of the
spectrum objects in S˚ as in Definition 3.6.

Definition 3.8. Evaluation at S0 P Sfin
˚ gives a functor, denoted by Ω8 : SppCq Ñ C.

Proposition 3.9. [3, 1.4.2.24] The map Ω8 : SppS˚q Ñ S˚ lifts to an equivalence

SppS˚q Ñ Sp.

We introduce some terminology.

Definition 3.10. Let F : C Ñ D be functors between 8-categories. We say that

(1) F is left exact if F commutes with finite limits. Denote the full subcategory

spanned by left exact functors by FunL
pC,Dq.

(2) F is right exact if F commutes with finite colimits. Denote the full subcategory

spanned by right exact functors by FunR
pC,Dq.

(3) F is exact if it carries zero objects to zero objects and fiber sequences to fiber
sequences.

Remark 3.11. If C is stable, then FunL
pC,Dq “ Exc˚pC,Dq; If D is stable, then

FunR
pC,Dq “ Exc˚pC,Dq; If both C and D are stable, the three kinds of exactness for

F are equivalent ([3, 1.1.4.1]), as well as being both reduced and excisive (Proposi-
tion 3.2).

Proposition 3.12. [3, 1.4.2.22] Let C,D be8-categories such that C has finite colimits
and D has finite limits. Then composing with Ω8 : SppDq Ñ D induces equivalence

Exc˚pC, SppDqq Ñ Exc˚pC,Dq.

Proof. (sketch) First, identify Exc˚pC, SppDqq “ SppExc˚pC,Dqq and the functor in
question to Ω8 : SppEq Ñ E for E “ Exc˚pC,Dq. Second, Ω8 is an equivalence here
since E is stable. �
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We introduce some more terminology.

Definition 3.13. Let C,D be 8-categories.

(1) Denote the full 8-subcategory spanned by functors admitting right adjoints by
LFunpC,Dq.

(2) Denote the full 8-subcategory spanned by functors admitting left adjoints by
RFunpC,Dq.

Proposition 3.14. ([3, 1.4.4.4]) Let C,D be presentable 8-categories such that D is
stable. Then Ω8 : SppCq Ñ C admits a left adjoint Σ8` : C Ñ SppCq.

Definition 3.15. Taking C “ S˚ in Proposition 3.14, the sphere spectrum is defined
to be S :“ Σ8` p˚q.

Theorem 3.16. ([3, 1.4.4.5]) Let C,D be presentable 8-categories such that D is
stable. Then there are equivalences:

LFunpSppCq,Dq
´˝Σ8`
ÝÑ LFunpC,Dq;

RFunpD, SppCqq Ω8˝´
ÝÑ RFunpD, Cq.

Proof. (sketch) The two assertions are equivalent. To prove the second assertion, we
first assume that C is pointed. By Proposition 3.14, we have the commutative diagram:

(1)

Exc˚pD, SppCqq Exc˚pD, Cq

RFunpD, SppCqq RFunpD, Cq

Ω8˝´

Ω8˝´

Ă Ă

If we can show that it is a pullback, the assertation will follow from Proposition 3.12.
The proof breaks into the following steps:

(1) Define an auxilory 8-category PrR . An object is a presentable 8-category. A
morphism is a functor that is accessible and preserves small limits. ([2, 5.5.3.1])
Between presentable 8-categories, the adjoint functor theorem shows that a
functor has a left adjoint if and only if it is accessible and preserves small limits
([2, 5.5.2.9]), so that we have RFun “ PrR .

(2) By the general case of 3.9, SppCq » limp¨ ¨ ¨ Ñ C Ω
Ñ Cq. Since C is pointed, Ω

has left adjoint Σ. So we can view the diagram in the braket as a diagram in
PrR .

The theorem [2, 5.5.3.18] says that it has a limit in PrR and PrR Ñ Ĉat8
preserves the limit. That is, SppCq is presentable, and

RFunpD, SppCqq » limp¨ ¨ ¨ Ñ RFunpD, Cq Ω˝´
Ñ RFunpD, Cqq.

(3) Since D is stable, an excisive functor G : D Ñ C is in RFun if and only of ΩG
is in RFun. That is, each square is a pullback in the following diagram:

¨ ¨ ¨ Ñ Exc˚pD, Cq Exc˚pD, Cq

¨ ¨ ¨ Ñ RFunpD, Cq RFunpD, Cq

Ω

Ă

Ω

Ă
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(4) By steps 2,3 and the identification:

Exc˚pD, SppCqq » SppExc˚pD, Cqq » limp¨ ¨ ¨ Ñ Exc˚pD, Cq Ω
Ñ Exc˚pD, Cqq,

we get that (1) is a pullback square.

For a not-necessarily-pointed C, replace it by the pointed 8-category C˚ :“ C1{ for a
terminal obejct 1. We have the following facts: C˚ is presentable ([2, 5.5.3.11]). There
is a canonical equivalence SppC˚q » SppCq˚ and SppCq˚ Ñ SppCq is also an equivalence
since SppCq is pointed ([3, 1.4.2.18]). In particular, they are all presentable by step 2.

It suffices to show that the two vertical maps in the following commutative diagram
are equivalences:

RFunpD, SppC˚qq RFunpD, C˚q

RFunpD, SppCqq RFunpD, Cq

Ω8˝´

» »

Ω8˝´

Indeed, the left arrow is an equivalence by the same machanism as the right arrow,
where SppCq plays the role of C. So we focus on the right arrow. By the adjoint functor

theorem stated in step 1, it suffices to show that a functor D G
Ñ C˚ is accessible and

preserves small limits if and only if the composition D G
Ñ C˚ Ñ C does. The “limit”

part follows from the dual statement of [2, 1.2.13.8]. The “colimit” part follows from
[2, 4.4.2.9] and the fact that C1{ Ñ C is a left fibration. �

Corollary 3.17. Let D be a presentable stable 8-category. Then evaluating at the
sphere spectrum S gives equivalence

evS : LFunpSp,Dq Ñ D.

Proof. The evaluation map factors as:

evS : LFunpSp,Dq Ñ LFunpS,Dq ev˚
Ñ D.

The first map is an equivalence by taking C “ S in Corallary 3.16. The second map is
an equivalence by taking S “ ˚ in [2, 5.1.5.6]. �

We would like to point out that the equivalence ev˚ in the proof shows that S is
freely generated under colimit by the object of one point ˚; and the equivalence evS

shows that Sp is freely generated under colimit by the object of the sphere spectrum S.

4. Duality

In this section we deal with various notions of duality. We first look at Alexander
duality concerning a subspace of a sphere. Passing to the stable category, Spanier-
Whitead duality is able to eliminate the choice of the sphere in Alexander duality.
Specializing Spanier-Whitehead duality to manifolds, one can recover the Atiyah duality
relating a manifold and its tangent bundle. If furthur this manifold is orientable, the
Thom isomorphism simplifies the Atiyah duality to give Poincaré duality of homology
and cohomology of the manifold.

We start withe the Alexander duality. Let X Ă Sn be a proper subspace. For a
subspace A Ă Sn, let Ac denote the complement of A in Sn.

Theorem 4.1 (Alexander duality). There is isomorphism for all r :

rȞ r pX q – Ȟ r pX , ptq – Hn´r pptc , X cq – rHn´r´1pX
cq.
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The theorem implies that the homology of X c is determined only by the (Čech)
cohomology of X . The Čech cohomology is for dealing with local pathologies. However,
the homotopy type of X c clearly involves the embedding. (Otherwise, knot theory would
not exist.)

Assume that X
i
Ñ Sn is a proper compact subset. Spanier-Whitehead proved that

the stable homotopy type of X c is determined by the stable homotopy type of X .

Their strategy is as follows: Let S denote the unreducd suspension. Then SX
Si
Ñ

Sn`1 is also a proper compact embedding. This procedure gives canonical homotopy
equivalence on the compliment. By manipulation on the dimenstion, they give for
f : X Ñ Y a functorial stable class of maps f ˚ : Y c Ñ X c , where X and Y are
embedded in different spheres. Using this map, they show that if f is a homotopy
equivalence, then f ˚ is a stable homotopy equivalence.

Moreover, Spanier eliminates the choice of embeddings of X and Y in a sphere.
What matters in the proof is a map µ : X ^ Y Ñ Sn´1. This gives the modern
treatment.

Definition 4.2. In the symmetric monoidal category pSp,^, Sq (defined in the next
talk), an object X is dualizable if there is an object DX and maps µ : X ^ DX Ñ S,
η : S Ñ DX ^ X such that the following diagrams commute (triangle identities):

DX ^ X ^ DX

DX DX

id^µη^id ,

X X

X ^ DX ^ X

id^η µ^id .

Theorem 4.3. Let X Ă Sn be a proper compact subspace. Then Σ1´nX c is the
(Spanier-Whitehead) dual of X .

Proposition 4.4. If X is a CW spectrum, then it is dualizable. If moreover X is finite
(built from finitely many cells), then DX is equivalent to a finite spectrum.

Proposition 4.5. T : rW , Z ^ DX s Ñ rW ^ X , Z s is an isomorphism if Z is finite or
both W and X are finite.

Corollary 4.6. If X is a finite spectrum, then for any spectrum E and integer r ,
E´r pDX q – E r pX q.

Theorem 4.7 (Atiyah duality). If M is a compact manifold (possibly with boundary),
then DpM{BMq » Thp´TMq. (Note that when M is closed, M{BM “ M`.)

Proof. We only proof the case when M is closed. The general case is similar. By
Whitney embedding theorem, there exists a number N such that there is an embedding
i : M Ñ RN . By tubular neighborhood theorem, i has a tubular neighborhood that is
diffeomorphic to the normal bundle ν of M in RN . We can put a Riemannian metric
on ν and denote by νď1 and ν“1 the unit disk bundle and unit sphere bundle.

Embedding the disjoint point at infinity, we get an embeeding M` Ñ SN . By
Spanier-Whitehead duality,

DpM`q » Dpνă1,`q » Σ1´NpRNzνă1q.

Consider the cofiber sequence

RNzνď1 Ñ RN Ñ RN{pRNzνă1q » νď1{ν“1 » Thpνq.

Since RN is contractible, we have Thpνq » ΣpRNzνă1q.
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The embedding gives ν‘TM – MˆRN , so that we have Σ´NThpνq » Thp´TMq.
This completes the proof. �

Theorem 4.8. (Poincaré duality) Let M be a compact manifold of dimension n (possi-
bly with boundary) and E be a spectrum. Assume that M is E -orientable. Then there
is isomorphism E r pM, BMq – En´r pM

`q for all integers r .

Proof. (sketch) The manifold M being E -orientable will imply the Thom isomorphism:

E˚pThp´TMqq – E˚pΣ
´npM`qq.

The claim follows from Atiyah duality (Theorem 4.7) and Corollary 4.6. �
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