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1 G -spaces and G -CW complexes

The main objects in equivariant homology theory and homotopy theory are G -spaces
which are spaces equipped with an action by a topological group G . In details, here
is the definition.

Definition 1.1. A (left) G -space is a topological space X with continuous actions
G ˆ X Ñ X such that ex “ x and gpg 1xq “ pgg 1qx .

Definition 1.2. A G -map f : X Ñ Y is a continuous map f such that f pgxq “
gf pxq (We call maps satisfying this by equivariant maps).

They togeother form the category of G -spaces, GTop.
The usual constructions on spaces apply equally well in this category. In par-

ticular, we have Cartesian product X ˆ Y with G acting diagonally: which means
gpx , yq “ pgx , gyq. The space of all continous maps from X to Y , MappX , Y q “
Y X is a G -space too. The action is pg ¨ f qpxq “ gf pg´1xq.

Remark: GToppX , Y q “ MappX , Y qG , G-fixed points of the mapping space.
We will introduce fixed points next section.

As mentioned for nonequivarint spaces, we take all spaces to be conpactly gen-
erated and weak Hausdorff, we have a G -homeomorphism

MappX ˆ Y , Z q – MappX ,MappY , Z qq

Be careful here, Map means all continuous maps from X to Y instead of the
morphism in the category GTop.

All the terminologies above have based version:

Definition 1.3. A (left) based G -space is a based topological space X with con-
tinuous actions G ˆ X Ñ X such that ex “ x , gpg 1xq “ pgg 1qx and the basepoint
fixed by G .

Definition 1.4. A G -map f : X Ñ Y is a based continuous map f such that
f pgxq “ gf pxq (We call maps satisfying this by equivariant maps).

We use GTop˚ to denote this cateogry. Recall that in based category, smash is
product and wedge is coproduct,

Map˚pX ^ Y , Z q – Map˚pX ,Map˚pY , Z qq
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They together form the category of based G -spaces, GTop˚.
Remark: There is a functor GTopÑ GTop˚ sending X to X` which is disjoint

union with addition point ˚ with trivial G -action.
Analogy to spaces, we now introduced G -CW complex to approximate G -spaces.

Definition 1.5. A G -CW complex X is the union of sub G -spaces X n such that
X 0 is a disjoint union of orbits G{H and X n`1 is obtained from X n by attaching
G -cells G{H ˆ Dn`1 along the attaching G -maps G{H ˆ Sn Ñ X n.

If we recall the definition of CW complex introduced yesterday, compare the
pushout diagram.

š

α Sn X n

š

α Dn`1 X n`1

Remark: Compare the pushout diagrams of non-equivariant CW complex and
of equivariant CW complex. To give a sense that G{H plays the role of points in
nonequivariant case.

š

α G{Hα ˆ Sn X n

š

α G{Hα ˆ Dn`1 X n`1

The attaching map G{HˆSn Ñ X n is determined by its restriction Sn Ñ pX nqH .

In equivariant theory orbits, G{H play the role of points.

Example 1.6. Use the examples of S1 with reflection action of Z{2 and S1 with
antipodal action of Z{2.
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2 Geometric fixed points and orbits

For H Ă G , we write the set of fixed points of H by XH “ tx |hx “ x for h P
Hu “ HomG pG{H, X q and Weyl group WGH “ NGH{H “ HomG pG{H, G{Hq.
We denote the orbit space by XG “ X {G .

Consider the functor F : TopÑ GTop, which sends a space Y to its underlying
space with trivial G -action. F has both right and left adjoints, which are geometric
fixed points and orbits. In particular,

G ToppY , X q – ToppY , XG q

G ToppX , Y q – ToppXG , Y q

In general, if we have a map of groups G Ñ K , it induces a functor f ˚ : KTopÑ
GTop. f ˚ has both left adjoint f!pX q “ K ˆG X and right adjoint f˚pX q “
MappK , X qG . If we take K “ ˚, it gives the above adjuntions.

Geometric fixed points and orbits are also limits and colimits. Let BG be the
category with one object and G for morphisms. We can naively regard GTop as
the (covariant) functor category F pBG ,Topq. A map f : G Ñ K induces a functor
F : BG Ñ BK and a functor f ˚ : KTopÑ GTop, f! is the left Kan extension along
F and f˚ is the right Kan extension along F .

BG Top

BK

F
f!

BG Top

BK

F
f˚
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The diagrams do not commute. There are natural transformation id ñ f ˚f!
and f ˚f˚ ñ id. In particular, if we take K “ ˚, left and right Kan extensions of a
functor X along F to the trivial category give the colimits and limits of X , we have

XG “ limBGX .

XG “ colimBGX .

3 Homotopy fixed points and orbits

Now we define homotopy fixed points to be G ToppEG , X q “ MappEG , X qG :“ X hG

and homotopy orbits to be EG ˆG X :“ XhG .

Remark 3.1. In the latter, we take X to be right G -space. (For a left G -space, we
could take the action of g to be g´1x, it gives a right G -space structure.)

Recall from last section, a map f : G Ñ K induces a map f ˚ : KTopÑ GTop.
We consider homootpy right Kan extension functor, the right derived functor Rf˚
of the right Kan extension f˚. The idea of derived functor here is choosing a fibrant
replacement functor Q : TopG “ FunpBG ,Topq Ñ TopG and setting Rf˚ “ f˚ ˝Q.
Taking K “ ˚, it defines the homotopy limits:

holimBGX “ X hG .

By the properties of right derived functors, there is a natural map from a functor
to its right derived functor. We get a natural map from limits to homotopy limits
and in particular,

XG Ñ X hG .

Geometrically, X “ Mapp˚, X q Ñ MappEG , X q. Taking G -fixed points, it gives
the map XG Ñ X hG , the same map as above. In fact, EG Ñ ˚ is nonequivariantly
homotopy equivalence. The G -action of EG is free and the G -action of ˚ is trivial.
Therefore, the map XG Ñ X hG is nonequivariantly homotopy equivalence, but not
equivariantly homotopy equivalence. (We will introduce equivariant homotopy next
section)

If we do the entire process for left homotopy derived functors Lf!, the left derived
functor of left Kan extension f!, we have

hocolimBGX “ XhG .

There is natural map from left derived functor to the functor and thus from homo-
topy colimts to colimts. We have a map

XhG Ñ X {G .

Geometrically, it is the map EG ˆG X Ñ ˚ ˆG X “ X {G . It is nonequivariantly
homotopy equivalence, but not equivariantly homotopy equivalence.

Remark 3.2. In GTop˚, the homotopy fixed points and orbits are MappEG`, X qG

and EG` ^G X .
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4 Homotopies

Definition 4.1. A G -homotopy of f , g : X Ñ Y is a G -map H : I ˆ X Ñ Y with
G acting trivially on I such that Hp0, xq “ f pxq and G p1, xq “ gpxq.

Definition 4.2. For a topological G -space X , H Ă G a closed subgroup of G , its
nth H-equivariant homotopy groups are

πH
n pX q “ π0HomG pG{H` ^ Sn, X q “ πnpX

Hq.

Definition 4.3. A G -map f : X Ñ Y is weak homotopy equivalence if f H : X h Ñ

Y H is a weak equivalence for all H Ă G .

Recall that in non-equivariant case, a map f : Y Ñ Z is an n-equivalence
if πppf q is a bijection for q ă n and a surjection for q “ n (for any choice of
basepoint). Now we give a analogous definition for equivariant case.

Definition 4.4. Let ν be a function from conjugacy classes of subgroups of G to
the integersě 1. We say that a map e : Y Ñ Z is a ν-equivalence if eH : Y H Ñ ZH

is a νpHq-equivalence for all H.

Theorem 4.5 (Homotopy extension and lifting property). Let A be a subcomplex of
a G-CW complex X of dimension ν and let e; Y Ñ Z be a ν-equivalence. Suppose
given maps g : A Ñ Y , h : A ˆ I Ñ Z , and f : X Ñ Z such that eg “ hii and
fi “ hi0 in the following diagram: then there exists maps g̃ and h̃ that make the
diagram commutes.

A Aˆ I A

Z Y

X X ˆ I X

i

i0

h

i1

g

i

f

i0
h̃

i1
g̃

Proof. We construct g̃ and h̃ on A Y X n by induction on n. Passing from the n-
skeleton to the pn` 1q-skeleton, we may work one cell of X not in A at a time. By
considering attaching mas, we quickly reduce the proof to the case when pX , Aq “
pG{HˆDn`1, G{HˆSnq and this reduces to the nonequivariant case of pDn`1, Snq

Theorem 4.6 (Whitehead Theorem). Let e : Y Ñ Z be a ν-equivalence and X be
a G-CW complex. Then e˚ : HomG pX , Y q Ñ HomG pX , Z q is a bijection if X has
dimension less than ν and a surjection if X has dimension ν.

Proof. Apply Theorem 4.5 to pX ,Hq for the surjectivity and to pZ ˆ I , X ˆBI q for
the injectivity.

Corollary 4.7. If e : Y Ñ Z is a ν-equivalence between G-CW complexes of
dimension less than ν, then e is a G -homotopy equivalence.
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Analogous to nonequivariant case, we have

Theorem 4.8. For any G -space X , there is a G CW complex ΓX and a (G)-weak
homotopy equivalence ΓX Ñ X .
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