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1 G-spaces and G-CW complexes

The main objects in equivariant homology theory and homotopy theory are G-spaces
which are spaces equipped with an action by a topological group G. In details, here
is the definition.

Definition 1.1. A (left) G-space is a topological space X with continuous actions
G x X — X such that ex = x and g(g'x) = (gg’)x.

Definition 1.2. A G-map f : X — Y is a continuous map f such that f(gx) =
gf (x) (We call maps satisfying this by equivariant maps).

They togeother form the category of G-spaces, GTop.

The usual constructions on spaces apply equally well in this category. In par-
ticular, we have Cartesian product X x Y with G acting diagonally: which means
g(x,y) = (gx, gy). The space of all continous maps from X to Y, Map(X,Y) =
YX is a G-space too. The action is (g - f)(x) = gf(g7x).

Remark: GTop(X,Y) = Map(X, Y)¢, G-fixed points of the mapping space.
We will introduce fixed points next section.

As mentioned for nonequivarint spaces, we take all spaces to be conpactly gen-
erated and weak Hausdorff, we have a G-homeomorphism

Map(X x Y, Z) = Map(X, Map(Y, Z))

Be careful here, Map means all continuous maps from X to Y instead of the
morphism in the category GTop.
All the terminologies above have based version:

Definition 1.3. A (left) based G-space is a based topological space X with con-
tinuous actions G x X — X such that ex = x, g(g’x) = (gg’)x and the basepoint
fixed by G.

Definition 1.4. A G-map f : X — Y is a based continuous map f such that
f(gx) = gf (x) (We call maps satisfying this by equivariant maps).

We use GTop,, to denote this cateogry. Recall that in based category, smash is
product and wedge is coproduct,

Map, (X A Y, Z) = Map, (X, Map, (Y, Z))



They together form the category of based G-spaces, GTop,,.

Remark: There is a functor GTop — G'Top,, sending X to Xy which is disjoint
union with addition point = with trivial G-action.

Analogy to spaces, we now introduced G-CW complex to approximate G-spaces.

Definition 1.5. A G-CW complex X is the union of sub G-spaces X" such that
X% is a disjoint union of orbits G/H and X"*! is obtained from X" by attaching
G-cells G/H x D"*1 along the attaching G-maps G/H x S" — X".

If we recall the definition of CW complex introduced yesterday, compare the
pushout diagram.

,s" —— X"

I |

Ha Dn+1 Xn+1

Remark: Compare the pushout diagrams of non-equivariant CW complex and
of equivariant CW complex. To give a sense that G/H plays the role of points in
nonequivariant case.

[1, G/Ha x S" —— X"

I |

[1, G/Hq x D1 —— xn+1
The attaching map G/HxS™ — X" is determined by its restriction S” — (X")H,
In equivariant theory orbits, G/H play the role of points.

Example 1.6. Use the examples of S! with reflection action of Z/2 and S* with
antipodal action of Z/2.
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2 Geometric fixed points and orbits

For H = G, we write the set of fixed points of H by X" = {x|hx = x for h €
H} = Homg(G/H, X) and Weyl group WgH = NgH/H = Homg(G/H, G/H).
We denote the orbit space by X = X/G.

Consider the functor F : Top — GTop, which sends a space Y to its underlying
space with trivial G-action. F has both right and left adjoints, which are geometric
fixed points and orbits. In particular,

GTop(Y, X) = Top(Y, X®)

GTop(X,Y) = Top(Xg, Y)

In general, if we have a map of groups G — K, it induces a functor f* : KTop —
GTop. f* has both left adjoint f(X) = K x¢ X and right adjoint f.(X) =
Map(K, X)©. If we take K = , it gives the above adjuntions.

Geometric fixed points and orbits are also limits and colimits. Let BG be the
category with one object and G for morphisms. We can naively regard GTop as
the (covariant) functor category F(BG, Top). A map f : G — K induces a functor
F : BG — BK and a functor f* : KTop — GTop, fi is the left Kan extension along
F and f, is the right Kan extension along F.

l T Top Bf | > Top



The diagrams do not commute. There are natural transformation id = *f
and f*f, = id. In particular, if we take K = x, left and right Kan extensions of a
functor X along F to the trivial category give the colimits and limits of X, we have

XC = limgeX.

X¢ = colimpgeX.

3 Homotopy fixed points and orbits

Now we define homotopy fixed points to be GTop(EG, X) = Map(EG, X)¢ := X"¢
and homotopy orbits to be EG x¢ X := Xj¢.

Remark 3.1. In the latter, we take X to be right G-space. (For a left G-space, we
could take the action of g to be g~!x, it gives a right G-space structure.)

Recall from last section, a map f : G — K induces a map f* : KTop — GTop.
We consider homootpy right Kan extension functor, the right derived functor Rf,
of the right Kan extension f,. The idea of derived functor here is choosing a fibrant
replacement functor Q : Top; = Fun(BG, Top) — Top¢ and setting Rf, = f, 0 Q.
Taking K = =, it defines the homotopy limits:

holimge X = X"°.

By the properties of right derived functors, there is a natural map from a functor
to its right derived functor. We get a natural map from limits to homotopy limits
and in particular,

X¢ — xhe.

Geometrically, X = Map(x, X) — Map(EG, X). Taking G-fixed points, it gives
the map X¢ — X"¢, the same map as above. In fact, EG — # is nonequivariantly
homotopy equivalence. The G-action of EG is free and the G-action of = is trivial.
Therefore, the map X¢ — X" is nonequivariantly homotopy equivalence, but not
equivariantly homotopy equivalence. (We will introduce equivariant homotopy next
section)

If we do the entire process for left homotopy derived functors Lf;, the left derived
functor of left Kan extension fi, we have

hocolimggX e XhG-

There is natural map from left derived functor to the functor and thus from homo-
topy colimts to colimts. We have a map

Xne — X/G.

Geometrically, it is the map EG xg X — = xg X = X/G. It is nonequivariantly
homotopy equivalence, but not equivariantly homotopy equivalence.

Remark 3.2. In GTop,, the homotopy fixed points and orbits are Map(EG,, X)®
and EG; Ag X.



4 Homotopies

Definition 4.1. A G-homotopy of f, g: X — Y isa G-map H: | x X — Y with
G acting trivially on / such that H(0, x) = f(x) and G(1, x) = g(x).

Definition 4.2. For a topological G-space X, H © G a closed subgroup of G, its
nth H-equivariant homotopy groups are

7H(X) = mHomg (G/Hy A S", X) = ma(XH).

Definition 4.3. A G-map f : X — Y is weak homotopy equivalence if f/ : X" —
YH is a weak equivalence for all H c G.

Recall that in non-equivariant case, a map f : Y — Z is an n-equivalence
if m,(f) is a bijection for ¢ < n and a surjection for g = n (for any choice of
basepoint). Now we give a analogous definition for equivariant case.

Definition 4.4. Let v be a function from conjugacy classes of subgroups of G to
the integers> 1. We say thatamap e : Y — Z is a v-equivalence if e" : YH — ZH
is a v(H)-equivalence for all H.

Theorem 4.5 (Homotopy extension and lifting property). Let A be a subcomplex of
a G-CW complex X of dimension v and let e; Y — Z be a v-equivalence. Suppose
given mapsg :A— Y, h: Ax |l — Z, and f : X — Z such that eg = hi; and
fi = hiy in the following diagram: then there exists maps g and h that make the
diagram commutes.
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Proof. We construct g and h on AU X" by induction on n. Passing from the n-
skeleton to the (n + 1)-skeleton, we may work one cell of X not in A at a time. By
considering attaching mas, we quickly reduce the proof to the case when (X, A) =
(G/H x D", G/H x S") and this reduces to the nonequivariant case of (D"*1, S™)

O

Theorem 4.6 (Whitehead Theorem). Let e: Y — Z be a v-equivalence and X be
a G-CW complex. Then e, : Homg (X, Y) — Homg (X, Z) is a bijection if X has
dimension less than v and a surjection if X has dimension v.

Proof. Apply Theorem [4.5/to (X, &) for the surjectivity and to (Z x I, X x él) for
the injectivity. O

Corollary 4.7. If e : Y — Z is a v-equivalence between G-CW complexes of
dimension less than v, then e is a G-homotopy equivalence.



Analogous to nonequivariant case, we have

Theorem 4.8. For any G-space X, there is a G CW complex T X and a (G)-weak
homotopy equivalence TX — X.
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