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We have discussed the category of G -space GTop in 2.1. In this note, we will
look at another model of GTop, i.e. the category of presheaves on the orbit category
that takes value in the category of spaces. Throughout this note, G is a finite group
or a compact Lie group, and by saying the subgroups of G , we refer to only those
closed subgroups.

For a group G , its orbit category OrbG is the category whose objects are or-
bits G{H, and morphisms G -equivariant maps. A presheaf on orbit category is a
contravariant functor from the orbit category OrbG . Given a G -space X , take its H-
fixed point for each subgroup H and the system of fixed point spaces tXH , H Ă Gu
forms a presheaf on orbit category. In the other direction, given a presheaf X, eval-
uating at the orbit G{e with G action, we obtain a G -space XpG{eq. This actually
gives a pair of adjoint functors

Θ: PpOrbG q ÝáâÝ GTop :Φ,

where PpOrbG q denotes the category of presheaves on the orbit category that takes
value in the category of spaces.

A. D. Elmendorf proved in [ELM] that this adjoint pair induces equivalence be-
tween the homotopy categories. In fact, with the correct model category structures
on both hand sides, this equivalence of homotopy categories can be seen in the
model categorical level:

Theorem 0.1. (Elmendorf)
There is a Quillen equivalence

Θ: PpOrbG q ÝáâÝ GTop :Φ.

1 Model category

The model category theory is for doing homotopy theory. Quillen developed the
definition of a model category to formalize the similarities between homotopy theory
and homological algebra.
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1.1 Weak factorization system and model structure

Definition 1.1. A weak factorization system (WFS) on a category C is a pair L,R
of classes of morphisms of C such that

• Every morphism f : X Ñ Y of C may be factored as the composition of a
morphism in L followed by one in R

f : X
PL
ÝÝÑ Z

PR
ÝÝÑ Y .

• The classes are closed under having the lifting property against each other:

– L is precisely the class of morphisms having the left lifting property
against every morphism in R;

– R is precisely the class of morphisms having the right lifting property
against every morphism in L.

Definition 1.2. A model structure on a category C is a choice of three distin-
guished classes of morphisms: cofibrations C , fibrations F and weak equivalences
W , satisfying the following conditions:

• W contains all isomorphisms and is closed under two-out-of-three: given a
composable pair of morphisms f , g , if two out of the three morphisms f , g ,
g ˝ f are in W, so is the third;

• pC , F XW q and pC XW , F q are two weak factorization systems on C. F XW
is called acyclic fibrations and C XW is called acyclic cofibrations.

When a category C is complete and cocomplete category with a model structure,
we call it a model category.

A key example which motivated the definition is the category of topological
spaces.

Example 1.3. The category of topological spaces, Top, admits a standard model
category structure with fibrations as Serre fibrations, equivalences as weak homo-
topy equivalences and cofibrations as the retracts of relative cell complexes.

In fact the model structure is cofibrantly generated in the sense that there are
small sets of morphisms I and J which permit the small object argument such that
I generates C and J generates CXW by taking transfinite composition of pushouts
of coproducts and taking retracts. The generating sets are

I “ tSn´1 Ñ Dn, n ě 0u, J “ tDn Ñ Dn ˆ I , n ě 0u.

Example 1.4. Cofibrantly generated model structures transfer along adjunctions([HIR,
11.3.2]). Use the cofibrantly generated model structure on Top, we obtain a cofi-
brantly generated model structure on GTop with generating sets

IGTop “ tG{H ˆ iuHĂG ,iPI , JGTop “ tG{H ˆ juHĂG ,jPJ .

2



Similarly, we can also put a cofibrantly generated model structure on PpOrbG q

which has the generating sets:

IPpOrbG q “ tMapG pG{H,´q ˆ iuHĂG ,iPI ,

JPpOrbG q “ tMapG pG{H,´q ˆ juHĂG ,jPJ .

1.2 Homotopy category of model category

The homotopy category HopCq of a model category C is the localization of C with
respect to the class of weak equivalences

CÑ HopCq “ CrW´1s,

so that the homotopy category has the universal property that the weak equivalences
become actual isomorphisms.

Remark 1.5. This definition of homotopy category does not depend on the choice
of fibrations and cofibrations. It only depends on the underlying category with weak
equivalences pC, W q. However, the model structure makes the homotopy category
easier to handle. In fact, with a model structure, HopCq is equivalent to the category
whose objects are those which are both fibrant and cofibrant, and morphisms are the
equivalence classes of morphism under left homotopy. This definition of homotopy
category avoids the set theory technical issues one may meet with while doing
localization.

1.3 Quillen equivalences

Quillen equivalences are one convenient notion of morphisms between model cate-
gories.

Definition 1.6. For C and D two model categories, an adjoint pair

F : C ÝáâÝ D :G

is a Quillen adjunction if the following equivalent conditions are satisfied:

1. F preserves cofibrations and acyclic cofibrations;

2. G preserves fibrations and acyclic fibrations;

3. F preserves cofibrations and G preserves fibrations;

4. F preserves acyclic cofibrations and G preserves acyclic fibrations.

Definition 1.7. The Quillen adjoint pair

F : C ÝáâÝ D :G

is a Quillen equivalence, if for any cofibrant object X P C and fibrant object Y P D,
FX Ñ Y is a weak equivalence iff the adjoint X Ñ GY is a weak equivalence.

Proposition 1.8. When pF , G q is an Quillen equivalence, they induces equivalence
on homotopy categories, i.e. the derived functors pLF , RG q are equivalences of
categories.
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2 Presheaves on orbit category

Definition 2.1. Orbit category associated to a group G , denoted by OrbG , is the
category whose

• objects are G -orbits G{H,

• morphisms are G -equivariant maps.

Example 2.2. Let GTop be the category of G -spaces and let PpOrbG q be the
category of presheaves on the orbit category OrbG . Let X be a G -space. Consider
the fixed point functor X p´q for every subgroup H Ă G . This defines a functor
Φ : GTop Ñ PpOrbG q. Φ has a left adjoint Θ : PpOrbG q Ñ GTop which sends
a presheaf χ to χpG{eq, on which the G action is induced by the group action on
orbit G{e.

In the previous example, we get a adjoint pair

Θ: PpOrbG q ÝáâÝ GTop :Φ.

Consider the model structures on GTop and PpOrbG q which are inherited from
the classical Quillen model structure on Top. It is easy to check that this is a
Quillen adjunction, and the next question is that if it is a Quillen equivalence. And
Elmendorf’s theorem gives an affirmative answer to this question.

Theorem 2.3. (Elmendorf)
There is a Quillen equivalence

Θ: PpOrbG q ÝáâÝ GTop :Φ.

Elmendorf‘s original proof [ELM] only showed these two categories have the
same homotopy theory by constructing explicitly a functor Ψ : PpOrbG q Ñ GTop
and a natural transformation ε : ΦΨ Ñ id such that εH : pΨχqH Ñ χpG{Hq is a
homotopy equivalence. We will also give another proof in the next section which
proves the statement in the model category level.

3 Proof of Elmendorf’s theorem

We provide two proofs here. One is by Piacenza and uses model category. The
other is Elmendorf’s original proof, by constructing explicitly the functor Ψ using
bar construction.

3.1 Sketch proof using model category

[EHCT, VI.6]
To talk about Quillen equivalence, we need model category structures on both

categories. The model structure we use on PpOrbG q and GTop are inherited by the
classical model structure on the category of spaces, i.e. the weak equivalences and
fibrations are defined level-wise, and the cofibrations are defined by lifting property.
More precisely:
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Definition 3.1. There is a model structure on PpOrbG q, where f : XÑ Y is a weak
equivalence (resp. fibration) if f pG{Hq : XpG{Hq Ñ YpG{Hq is a weak equivalence
(resp. fibration) in Top. for every G{H P OrbG . f : XÑ Y is a cofibration if it has
left lifting property with respect to all acyclic fibrations.

Definition 3.2. There is a model structure on GTop, where f : X Ñ Y is a
weak equivalence (resp. fibration) if f H : XH Ñ Y H is a weak equivalence (resp.
fibration) in Top. for every subgroup H Ă G . f : X Ñ Y is a cofibration if it has
left lifting property with respect to all acyclic fibrations.

Under these model structures, we are able to identify the cofibrant objects in
PpOrbG q: cofibrant objects are retracts of cellular objects, and cellular objects are
generated under pushout along inclusions and direct colimits, by

tMapG pG{H,´q ˆ X | H Ă G , X is a cell in Topu

A key observation is that p´qH preserves retracts, relevant pushouts, and direct
colimits. Therefore, by checking it on the generating objects, we obtain the following
lemma:

Lemma 3.3. If X P PpOrbG q is cofibrant, then the unit of the adjunction

η : XÑ ΦΘpXq

is an isomorphism.

Proof. It’s sufficient to check when X “ MapG pG{H,´q ˆ Y. And we have that

XpG{K q “ MapG pG{H, G{K q ˆ Y – pG{HqK ˆ Y – pXpG{eqqK .

�

The lemma leads to the following proof of the main theorem.

Proof. (Elmendorf’s theorem) Given f : ΘpXq Ñ Y , we have that

XpG{Hq
ηH
ÝÑ pXpG{eqqH

f H
ÝÑ Y H .

By the previous lemma, ηH is a weak equivalence. The 2-out-of-3 axiom then shows
that f H is a weak equivalence iff the composition XpG{Hq Ñ Y H is. Since weak
equivalences on PpOrbG q and GTop are defined level-wise, f : ΘpXq Ñ Y is a weak
equivalence iff its adjoint XÑ ΦpY q is. �

3.2 Construction using bar construction

Since pΘ, Φq is a Quillen equivalence, it induces a equivalence of homotopy cate-
gories, i.e. the derived functors pLΘ, RΦq are equivalences of homotopy categories.
In the original proof in [ELM], the left derived functor Ψ “ LΘ is constructed
explicitly using bar construction.[EHCT, V.3]
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Definition 3.4. Let C be a category and let D be a category equipped with a
Cartesian product ˆ. Let F be a contravariant functor C Ñ D and let G be
a covariant functor C Ñ D. The construction B˚pF ,C, G q defines a simplicial D
object whose n-th level is

>cnÑ...Ñc0F pc0q ˆ G pcnq.

The face maps are defined by composition and the degeneracies by inserting the
identity map.

When D is tensored over Top, we can take the geometric realization of this
simplicial object, and we obtain the bar construction |B˚pF ,C, G q|.

By some general theory of bar construction, when G is a functor corepresented
by c P C, i.e. G “ Gc “ MapCpc ,´q, there is a natural homotopy equivalence
obtained by composing and apply F :

|B˚pF ,C, G q|Ñ F pcq.

Now we apply the above facts in our case. Let C be OrbG , F be X and let G be
the functor J : OrbG Ñ GTop which realizes each orbit G{H to the corresponding
G -space G{H. Since G acts on J in a way compatible with the face and degeneracy
maps, the bar construction gives a G -space.

Define Ψ : PpOrbG q Ñ GTop to be

ΨpX q :“ |B˚pX , OrbG , Jq|.

Bar construction commutes with fixed point functors. Therefore we have

pΨpX qqH – |B˚pX , OrbG , JHq| »ÝÑ X pG{Hq.

In other words, Ψ gives a homotopy inverse of Φ.

4 Applications

4.1 Coefficient system and Bredon (co)homology

An application of Elmendorf’s theorem is the construction of Eilenberg-MacLane
G -spaces.

Let hOrbG denote the homotopy category of orbit category.

Definition 4.1. A coefficient system M is a contravariant functor M : hOrbG Ñ Ab.

M can be regarded as a continuous contravariant functor from OrbG to Ab.
Let B be the classifying space functor. Given any coefficient system M, we can

regard the composition B ˝ M as a presheaf on the orbit category. Therefor we
can construct Elenberg-MacLane space K pM, 1q :“ ΨpB ˝ Mq. Similarly, we can
construct K pM, nq :“ ΨpBn ˝Mq.
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With these Elenberg Maclane spaces, we can define a equivariant represented
cohomology theory, i.e. the Bredon cohomology[EHCT, I.4], by taking

H˚pX ; Mq :“ rX , K pM, nqsG .

It satisfies the Eilenberg-Steenrod axioms, with the classicale dimension axiom re-
placed by the following:

HpG{H; Mq – MpG{Hq.

In other words, in the equivariant world, orbits are thought of as points.

4.2 Universal space for a family of subgroups

Definition 4.2. F is a family of subgroups of G if it is a set of subgroups of G and
it is closed under conjugation and taking subgroups.

We can change the morphism of weak equivalences on the category of GTop by
taking

W “ tX Ñ Y |XH Ñ Y H P WTop, H P Fu.

We call it F-equivalence.

Remark 4.3. When F “ teu, F weak equivalence is just underlying equivalence.
This corresponds to the category with only one object G{e and morphism indexed
over G acting on it. It is the category denoted by BG . FunpBG , Topq is category
of G -spaces with the naive G -structure.

When F contains every subgroup so that the weak equivalences are as defined
before, it corresponds to OrbG . FunpOrbG , Topq is category of G -spaces with the
genuine G -structure. It contains not only the data on G{e level, but also all the
data on the subgroups, the transfers, restrictions and so on.

Definition 4.4. Let F be a family of subgroups of G . Define EF to be the presheaf
where

EFpG{Hq :“

#

˚, H P F,

H, H R F.

The universal space of F is defined to be the G -space ΨpẼFq. We abuse the notation
and call the G -space EF.

Remark 4.5. The universal spaces EF is F-weakly contractible and F-cofibrant.
It has the property that if X has all its isotropy in F, then rX , EFsG – ˚. When
F “ teu, this is the usual universal space EG , whose underlying space is weakly
contractible.

Example 4.6. Consider the cofiber sequence

EF` Ñ S0 Ñ ẼF.

This is a powerful tool called isotropy separation. For a G -space X . We smash
it with the cofiber sequence, we will get

EF` ^ X Ñ X Ñ ẼF ^ X .

And it separate X into the F-weak contractible space ẼF^X and a F-space EF`.
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5 Universal property of presheaves and infinity cat-
egorical point of view

Let j denote the Yoneda embedding j : D Ñ PpDq. Presheaves have the following
universal properties[HTT, 5.1.5.6]:

Theorem 5.1. There is an equivalence of infinity categories induced by Yoneda
embedding j between

FunL
pPpDq,Cq Ñ FunpD,Cq,

where D is a simplicial set, C is an 8-category which admits small colimits, and
FunL denotes the full subcategory of functor category spanned by colimit preserving
functors.

In other words, any functor f : D Ñ C equivalently factorizes as the composition
F ˝ j where F is colimit-preserving.

We have the following infinity categorical version of Elmendorf’s theorem.

Theorem 5.2. (Elmendorf) The functor Φ : GTop Ñ PpOrbG q induces an equiva-
lence of 8-categories.

Combine it with the following proposition:

Proposition 5.3. The Yoneda embedding j : D Ñ PpDq generates PpDq under
small colimits.

We have that the analogous statement in the equivariant case:
GTop is generated by OrbG under small colimits.
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