
Application

Weinan Lin

Let G be a compact Lie group. In this talk we are going to introduce the ordinary
equivariant cohomology and the Smith theory as an application.

1 Ordinary Equivariant Cohomology

Definition 1.1. A coefficient system A is a contravariant functor A : hOG Ñ Ab.

Example 1.2. πnpX q, homotopy groups of a based G -space X : πnpX qpG{Hq “
πnpX

Hq.

This is an abelian category where kernels, cokernels, and biproducts are defined
orbit wise. We shall define Bredon cohomology. First we give the axioms for the
reduced theory, which determines the unreduced theory in the usual way.

Theorem 1.3. Let G be a topological group, and A be a coefficient system. There
exist (unique) functors

H̃n
G p´;Aq : hGTopop

˚ Ñ Ab

together with isomorphisms σn : H̃n
G pX ;Aq – H̃n`1

G pΣX ;Aq. (where n P Z) satisfy-
ing the following axioms:

• (Additivity) The inclusion Xi ãÑ
Ž

i Xi induce an isomorphism:

H̃n
G p

ł

i

Xi ;Aq –
ź

i

H̃n
G pXi ;Aq.

• (Exactness) If X
f
ÝÑ Y ãÑ Cf is a cofiber sequence, then the sequence

H̃n
G pCf ;Aq Ñ H̃n

G pY ;Aq
f ˚
ÝÝÑ H̃n

G pX ;Aq

is exact.

• (Weak equivalences) H̃n
G sends weak equivalences to isomorphisms.

• (Dimension) If G{H is an orbit, then

H̃n
G pG{H`;Aq “

#

0 n ‰ 0,

ApG{Hq n “ 0.
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We shall not prove uniqueness here, but we will construct the Bredon cohomol-
ogy for G -CW complexes.

Definition 1.4. Let X be a G -CW complex, A be a coefficient system. Define
chain complex in the category of coefficient systems as follows:

C npX qpG{Hq “ HnppX
nqH , pX n´1qH ;Zq

The connecting homomorphism associated to the triple ppX nqH , pX n´1qH , pX n´2qH

provides a map d : C npX q Ñ C n´1pX q. We define a cochain complex of abelian
groups as

C n
G “ HomCoeffpC npX q,Aq

The homology of this complex is the Bredon cohomology, i.e. H˚G pX ;Aq “ HC˚G .

Example 1.5. If A is a constant coefficient system, then H˚G pX ; Aq “ H˚pX {G ; Aq.

2 Smith Theory

Theorem 2.1 (P.A. Smith, 1939). Let G be a p-group, and X be a finite G-CW
complex that is a mod p cohomology n-sphere. Then, XG is either empty or a
cohomology m-sphere, for some m ď n. If p odd, then we have that n´m is even,
and if further n is even, XG is non-empty.

Remark 2.2. If H Ÿ G , XH is a natural G{H-space. Further, XG “ pXHqG{H .

Since G is a p-group, it is solvable. By the remark we need only consider the
case G “ Cp.

Proposition 2.3. Let G “ Cp. There are coefficient systems A,B,C so that:

H˚G pX ;Aq – H˚pX ;Fpq

H˚G pX ;Bq – H˚pXG ;Fpq

H˚G pX ;Cq – H̃˚ppX`{X
G q{G ;Fpq

Proof. We define:

ApG q “ FprG s Ap˚q “ Fp

BpG q “ 0 Bp˚q “ Fp

CpG q “ Fp Cp˚q “ 0

We only need to verify the first four axioms of Bredon cohomology for the functors
on the right, and then simply restrict these functors to the orbit category to compute
A,B,C.

For the remainder of this section, all nonequivariant cohomology is taken in Fp

coefficients.
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Lemma 2.4. Let I be the functor sending G to the augmentation ideal of FprG s
and ˚ to 0, Then Ip´1 “ C, and we have exact sequences:

0 Ñ IÑ AÑ B‘ CÑ 0

0 Ñ CÑ AÑ B‘ IÑ 0

and, for each 1 ď n ă p ´ 1,

0 Ñ In`1 Ñ In Ñ CÑ 0

We omit the verification of the lemma. The following theorem is the core of the
proof.

Theorem 2.5. We have the following equations:

•
ř

q dim HqpXG q ď
ř

q dim HqpX q

• χpX q “ χpXG q ` pχ̃ppX`{X
G q{G q

Proof. From the first two sequences of Lemma 2.4, we have the following long exact
sequences:

¨ ¨ ¨ Ñ Hq
G pX ; Iq

α
ÝÑ HqpX q

β
ÝÑ HqpXG q ‘ H̃qppX`{X

G q{G q
γ
ÝÑ Hq`1

G pX ; Iq Ñ ¨ ¨ ¨

H̃qppX`{X
G q{G q

α1
ÝÑ HqpX q

β1

ÝÑ HG pXG q ‘ Hq
G pX ; Iq

γ1

ÝÑ H̃q`1ppX`{X
G q{G q

We write aq “ dim HqpX q, bq “ dim HqpXG q, cq “ dim H̃qppX`{X
G q{G q, iq “

dim Hq
G pX ; Iq. From the first sequence we have

iq`1 ě dimpIm γq “ bq` cq´dimpImβq “ bq` cq´aq`dimpImαq ě bq` cq´aq

ùñ bq ` cq ď aq ` iq`1

From the second, similarly we have

bq ` iq ď aq ` cq`1

Adding these together, we have

2bq ` cq ` iq ď 2aq ` cq`1 ` iq`1

Summing over 0 ď q ď r1, and choosing r larger than the dimension of X (so that
all cohomology at degree r or higher vanishes), we obtain:

2
ÿ

bq ď c0 ` i0 ` 2
ÿ

q

bq ď 2
ÿ

q

aq

as required.
To obtain the second equality, we quickly prove the following algebraic fact:
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Proposition 2.6. Consider the long exact sequence of finite dimensional vector
spaces:

¨ ¨ ¨ Ñ C k´1 γk´1
ÝÝÝÑ Ak αk

ÝÑ Bk βk
ÝÑ C k γk

ÝÑ Ak`1 Ñ ¨ ¨ ¨

we have χpBq “ χpAq ` χpC q.

Proof. We have dim Ak “ dimpImαkq ` dimpkerαkq, and similarly for B, C . Using
exactness, we write:

χpBq “
ÿ

k

p´1qk dimpker βkq `
ÿ

k

p´1qk dimpker γkq

χpC q “
ÿ

k

p´1qk dimpker γkq `
ÿ

k

p´1qk dimpkerαk`1q

χpAq “
ÿ

k

p´1qk dimpkerαkq `
ÿ

k

p´1qk dimpker βkq

and therefore

χpBq ´ χpC q “
ÿ

k

p´1qk dimpker βkq ´
ÿ

k

p´1qk dimpkerαk`1q

“
ÿ

k

p´1qk dimpker βkq `
ÿ

k

p´1q6k dimpkerαkq “ χpAq

Returning to the proof of Theorem 2.5, we use either the first or second long
exact sequence to write:

χpX q “ χIpX q ` χpXG q ` χ̃ppX`{X
G q{G q

Using the third family of sequence in Lemma 2.4, we write:

χInpX q “ χIn`1pX q ` χ̃ppX`{X
G q{G q

Summing over 1 ď n ă p ´ 1, we have

χIpX q “ χIp´1pX q ` pp ´ 2qχ̃ppX`{X
G q{G q “ pp ´ 1qχ̃ppX`{X

G q{G q

Combining these expressions, we obtain:

χpX q “ χpXG q ` pχ̃ppX`{X
G q{G q

Proof of Theorem 2.1. If X is a cohomology sphere, then
ř

q dim HqpX q “ 2.

Then, by the first part of Theorem 2.5,
ř

q dim HqpXG q can be 0, 1 or 2; by the
second part, we can rule out 1, since the Euler characteristic of a cohomology sphere
is either 0 or 2, and χpX q ” χpXG q mod p. If

ř

q dim HqpXG q “ 0, the XG is

empty. If
ř

q dim HqpXG q “ 2, then XG is another cohomology sphere. If p ą 2,
then χpSnq ” χpSmq mod p iff χpSnq “ χpSmq, so n ´ m is even. If further n is
even, then χpXG q ” 2 mod p, and so XG ‰ 0.
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