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1 Motivation

Equivariantly we care about G -spaces and G -spectra, the integer grading is not sufficient to en-
code the information of the group actions thus people enlarge the index set in order to fix this
deficiency. That is why we would like to have this RO(G )-graded system on spheres.

Furthermore one need the spheres to be equipped with a G action to talk about the equivari-
ant Poincare duality. If otherwise, let E ∗(−) and E∗(−) be a general cohomology and homology
theory (coefficient systems actually) respectively, we would like to expect for a G -manifold X has
dimension n and embeds into some Rm with a G -action, we can identify

En(X ) ∼= Em−n(X )

However, roughly En(X ) = [X ,E ]G−n and Em−n(X ) = [S , colim(Em−n ∧ X )]G = [S , colim(Em−n ∧
X )G ]. Notice that X is at different sides of the homotopy classes of G -mapping spaces, and we can
not get along with this provided only integer grading.

So let us start our journey with another family of spheres: indexed over representations. In
order to be safe we will assume G to be a finite group throughout the note even sometimes
might not necessary.

2 Representation and Universe

2.1 Representation of a Group

Definition 2.1. A representation of a group G on a vector space V over a field k is a group homo-
morphism

ϕ : G → GL(V )

where GL(V ) is the general linear group on V . Here V is called the representation space and the
dimension of V is the dimension of the representation.

1



We usually refer to V as the representation itself if there is no confusion. The reason why we
are introducing this algebraic gadget is, a group homomorphism ϕ : G → GL(V ) is the same data
as a group action ψ : G × V → V .

In practice it is convenient to restrict the codomain GL(V ) to the orthogonal matrices O(V ) by
the process of Gram-Schmidt. We thus call the representations orthogonal representations. And
most of the case our field k will be the real number R.

Example 2.2.

1. trivial representation: ϕ is mapping everything in G to the identity matrix in GL(V ).

2. (left) regular representation: For a finite group G , the (left) regular representation ρ is a
representation on the k-vector space V generated by the elements of G . i.e. V = R[G ] =⊕
g∈G

R, the group ring.

Apparently these examples are not down to earth enough, so let’s also look at some examples
of examples:

Example 2.3.

1. for G = C2 = {e, σ}, the cyclic group of order 2, the regular representation V over R is a real
vector space with a basis {e, σ}. The group homomorphism ϕ is given by

ϕ(e) =

[
1 0
0 1

]
, ϕ(σ) =

[
0 1
1 0

]

2. for G = C3 = {e, σ, σ2}, the cyclic group of order 3, the regular representation V over R is a
real vector space with a basis {e, σ, σ2}. The group homomorphism ϕ is given by

ϕ(e) =

1 0 0
0 1 0
0 0 1

 , ϕ(σ) =

0 1 0
0 0 1
1 0 0

 , ϕ(σ2) =

0 0 1
1 0 0
0 1 0



Exercise 2.4. Show that for a prime p, the cyclic group Cp of order p has regular representa-
tion V generated by the p-th roots of unity.

For a vector space, we can talk about its subspace. Same thing with G -actions.

Definition 2.5. Let V be a G -representation given by ϕ : G → GL(V ). A linear subspace W ⊆ V
is called a G -invariant if ϕ(g)w ∈ W for all g ∈ G and all w ∈ W . The restriction of ϕ to a
G -invariant subspace W is known as a subrepresentation.

All representations have a subrepresentation with the trivial G -invariant subspaces, but some-
times we can break down a whole representation into non-trivial pieces until we can’t do it any-
more. Those can not further break down give the idea of irreducible representation.

Definition 2.6. A representation ϕ : G → GL(V ) is said to be irreducible if it has only zero sub-
representations.
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We have learned the fact that we can decompose a representation into irreducible subrepresen-
tations. On the other hand, does every representation V sitting inside a ”larger” representation?
The answer is Yes.

Proposition 2.7. Let G be a finite group and ρ be its regular representation. For any representation V of
G , there exists an integer n such that V embeds in ρn.

Proof. The proof is pretty algebraic, we sketch it in 2 steps:

1. Any representation V can be decomposed into irreducible representations, i.e. V ∼=
⊕
i
niVi

where Vi is irreducible.

2. Let V be an irreducible representation, then V embeds in ρ.

The first step is straightforward. As to the second one, V can be thought of as a R[G ]-module,
where R[G ] is the group ring. If V is irreducible then it is a simple R[G ]-module (the only proper
submodule is 0). The Maschke’s theorem gives us the quotient from the free R[G ]-module R[G ]n

to V has a splitting:
R[G ]n ← V

Since V is simple, it should embed into one copy of R[G ], otherwise it would split further into
direct sum of non-trivial submodules, contradicts its simplicity. �

Actually, over the complex number C for any dimension d irreducible G -representation V , we
have

ρ ∼= V d ⊕W

where ρ is the regular representation and W doesn’t contain V as a subrepresentation. This is not
true over R.

2.2 Universes of G -representation

For the integer grading, we write Z as the set of all integers. Now we need a parallel concept, i.e.
a collection of all the representations we care about.

Definition 2.8. A G -universe U is a countable direct sum of representations such that U contains

• the trivial representation;

• each of its subrepresentations infinitely often.

Usually we would expect the universe contains all the ”small blocks”, i.e. the irreducible rep-
resentations.

Definition 2.9. A G -universe U is complete if it contains every irreducible representations up to
isomorphism.

A complete universe is good because it guarantees the existance of all transfers (they are wrong
way maps make sense only stably, we will see more in later talks):

G/H → G/K , for K ⊆ H
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Example 2.10. Due to the fact that every representation embeds into some copies of the regular
representation, a common universe we are taking is U = ρ∞. And it is complete.

Exercise 2.11. Give an example of an incomplete universe of C2, is it trivial?

3 G -spheres and the Equivariant Freudenthal suspension theo-
rem

We talked about the representations of a group, of course they have a G -action. But where are the
spheres? We are going to take good use of the one point compactification.

3.1 G -spheres

Let V be a G -representation, let SV denote the one point compactification of V . Observe that G
acts trivially on the point ∞, which is consider as the based point of the G -space SV . Alternatively,
SV can be thought as D(V )/S(V ), where D(V ) is the unit disk and S(V ) the unit sphere of V .

SV inherits the G action from the representation V . With this family of G -spheres at hand, we
can define the equivariant suspention and the equivaraint loop funtors:

ΣVX = SV ∧ X ΩVX = Map∗(S
V ,X )

(Here G acts on Map∗(SV ,X ) by conjugation.) And they form an adjunction:

ΣV : GTop −⇀↽− GTop : ΩV

Exercise 3.1. Prove this.

3.2 connectivity and the suspension theorem

We relate the connectivity of a G -space X to the connectivity of its fixed points.

Definition 3.2. Let X be a G -space. For H a subgroup of G , define an natural number-valued
function

cH (X ) = the connectivity of XH

Remark 3.3. The convention is when X is empty, the function value will be extended to −1. The
connectivity of non-path connected spaces is also −1.

We can talk about the G -map being a ν-equivalence, where ν is an natural number-valued
function with all subgroup H of G as input.

Definition 3.4 (I.3 in [1] right above Theorem 3.1). Let f : X → Y be a G -map between G -spaces.
We say that f is a ν-equivalence if

f H : XH → YH

is a ν(H)-equivalence for every H a subgroup of G .
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Theorem 3.5 (IX.1 Theorem 1.4 in [1]). [equivariant Freudenthal suspension theorem] The map ηY :
Y → ΩV ΣVY is a ν-equivalence if ν satisfies:

• ν(H) ≤ 2cH (Y ) + 1 for all subgroup H with VH 6= 0;

• ν(H) ≤ cK (Y ) for all K ⊆ H with VK 6= VH .

Therefore the suspension map
ΣV : [X ,Y ]G → [ΣVX , ΣVY ]G

is surjective if dim(XH ) ≤ ν(H) for all H , and bijection if dim(XH ) ≤ ν(H)− 1.

Note that the non-equivariant Freudenthal suspension theorem can be viewed as a special case,
by letting ν : point → N to be the constant function, i.e. a chosen natural number. Let’s look at a
simple example.

Example 3.6. Let G = C2, V = ρ the regular representation, and the C2-space be S2 with antipodal
action, therefore (S2)C2 = ∅ and (S2)e = S2. Then ν needs to satisfy the following condition in
order for η : S2 → ΩρΣρS2 to be a ν-equivalence:

• ν(C2) ≤ 2cC2(S2) + 1 = −1, ν(e) ≤ 2ce(S2) + 1 = 3, since ρe = R2 6= 0 and ρC2 = R 6= 0;

• ν(C2) ≤ ce(S2) = 1, since ρC2 = R 6= R2 = ρe .

This is telling us the map ηe : S2 → ΩρΣρS2 is a 3-equivalence, it gives information about ΩρΣρS2,
which is very hard to visualize.

There is another version of Freudenthal using coefficient systems, using Mackey functors (see
XI.4 Theorem 4.5 in [1]), I am not sure which is the better version to present.

4 RO(G )-graded homotopy groups and stable homotopy groups
of G -spaces

4.1 Unstable homotopy group of G -spaces

Now we have the G -spheres, passing to homotopy classes we can talk about homotopy groups
graded by representations.

Definition 4.1. Let V be a G -representation. For any H subgroup of G , one may think V as an
H-representation as well. Define

πH
V (X ) = [SV ,X ]H ∼= [G+ ∧H SV ,X ]G

These are called the RO(G )-graded homotopy groups of a G -space X .

Remark 4.2. Inside RO(G )-grading, there is an issue of choosing an isomorphism as a representa-
tive between SV ∧SW and SV⊕W . It is possible to make such a choice such that the RO(G )-graded
homotopy group does not depent on the chosen isomorphism. This discussion can be found in
Lewis and Mandall’s paper Equivariant universal coefficient and Künneth spectral sequences appendix
A.
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Remark 4.3. There is a warning to make here that πH
V (X ) is not actually a group, the pinch map

SV → SV ∨ SV is equivariant, since the equater is G -invariant (because the action preserves
distance). But the base point doesn’t behave well under this collapsing. Moreover to get the
inverse, we need one copy of the trivial representation anyway to obtain the negative orientation.

Example 4.4.

1. Let V be the trivial representation of dimension n, then πH
n (X ) = [Sn,X ]H ∼= [Sn,XH ] =

πn(XH ), we get the integer graded equivariant homotopy group (coefficient system) back;

2. Let G = C2, V = σ the sign representation. πe
σ(X ) = [Sσ,X ]e = π1(X ) and πC2

σ (X ) =
[Sσ,X ]C2 ;

3. Let G = C2, V = ρ, then πe
ρ (X ) = [Sρ,X ]e = π2(X ) and πC2

ρ (X ) = [Sρ,X ]C2 ;

4. From above one might guess that for a G -representation V of dimension d , πe
V (X ) = [SV ,X ]e =

πd (X ).

4.2 Stable homotopy group of G -spaces

Like in non-equivariant case, we can define stable maps between G -spaces X and Y by suspending
enough times. However now the grading is over G -representations, we should be more careful
when taking colimit.

Definition 4.5. Let U be a complete G -universe for a finite based G -CW complex X and any based
G -space Y . Define the stable G -map between X and Y

{X ,Y }G = colim
V∈U

[ΣVX , ΣVY ]G

where the colimit is taken over

[ΣVX , ΣVY ]G
−∧SW−V
−−−−−→ [ΣWX , ΣWY ]G

for any V ⊆ W .

Since X is compact, recall we have adjunction ΣV a ΩV , thus

colim
V∈U

[ΣVX , ΣVY ]G ∼= colim
V∈U

[X , ΩV ΣVY ]G

Usually this is preferred because it saves us to think about two spots at the same time.

Remark 4.6. When X is not finite CW, we need extra work to define such stable G -maps.

In the case G is finite, we do have this stabilized at some representation.
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Proposition 4.7. If G is finite and X is finite dimensional, there exists a representation V0 such that for
any representation V ,

[ΣV0X , ΣV0Y ]G
∼=−→ [ΣV0⊕VX , ΣV0⊕VY ]G

is an isomorphism.

In other words,
{X ,Y }G ∼= [ΣV0X , ΣV0Y ]G

Let X be the G -sphere SV , we get the RO(G )-graded stable homotopy group of a G -space

πStab,G
V (Y ) = {SV ,Y }G = colim

V∈U
[ΣV SV , ΣVY ]G ∼= colim

V∈U
[SV , ΩV ΣVY ]G

4.3 Equivariant stabilization and the naive G -spectra

Non-equivariantly we have the stablization functor Q = colim
n

ΩnΣn = Ω∞Σ∞, here we define the

equivariant stablization functor by changing the way of taking colimit.

Definition 4.8. Let U be a complete G -universe, for a G -space X , define

QX := colim
V∈U

ΩV ΣVX

where the colimit is taken over

ΩV (ΣVX )
ΩW−V ◦(−∧SW−V )−−−−−−−−−−−→ ΩW ΣWX

for any V ⊆ W .

Remark 4.9. Since ΣV and ΩV do not commute, the order of the composition above matters.

The functor Q is defined to be a colimit, thus has the universal properties.

Proposition 4.10. For any G -representation V ∈ U , let X be a G -space, then there is a natural homeo-
morphism

QX ∼= ΩVQΣVX

Exercise 4.11. Prove this.

Now let’s think naively, non-equivariantly to get a spectrum we need the structure maps S1 ∧
Xn → Xn+1 for all n. If we do the same thing, we will get a version of G -spectra where the structure
maps don’t really interfere with the G -action.

Definition 4.12. A naive G -spectrum contains the following data:

• A family of G -spaces Xn for n ∈N;

• A family of G -maps from S1 ∧ Xn → Xn+1 for all n as the structure maps.
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Later we will see a right notion of G -spectra (the genuine G -spectra) where the structure maps
are from SV ∧ XW to XV⊕W , i.e. RO(G )-graded, with V and W in some given universe U . Pro-
viding this, we can also think the naive G -spectra as the genuine G -spectra where the universe U
contains only the trivial representation.

We still have this ”Σ∞” functor
Σ∞
G : GTop→ GSp

given by (Σ∞
GX )n = Sn ∧ X . Choose an universe U and let V ∈ U , we can actually let (Σ∞

GX )V =

SV ∧ X , thus the target would land in the category of genuine G -spectra.

Now let’s step back and take a look at an example of the equivariant stable maps.

Example 4.13. For a finite based G -CW complex X and any based G -space Y , if U is the trivial
universe, we have {X ,Y }G = colim

n
[ΣnX , ΣnY ]G , the action of taking colimit has nothing to do

with the G -action. So this is the same as homotopy classes of maps between the naive G -spectra
Σ∞
GX and Σ∞

GY .

Exercise 4.14. I’ll buy you a beer if you do another example.

5 A general approach of the Universal property of stabilization

We saw the construction and the universal property of the category of spectra non-equivariantly
in 1.3 and 1.4, and the construction works equivariantly too, without doing much modifying,
especially on the way of getting the catefory of naive spectra. Here in this section we are going
to see another way to approach it, via localizing at a single morphism in a symmetric monoidal
category.

Let C be a symmetric monoidal category, we can define another category using the data of C.

Definition 5.1 (2.0.0.1 in [5]). Let (C,⊗) be a symmetric monoidal category. We define a new
category C⊗ as follows:

• object: finite sequence of objectis of C, denote by [C1, ...,Cn].

• morphism from [C1, ...,Cn] to [C ′1, ...,C ′m] in C⊗ consists of a subset S ⊆ {1, ..., n}, a map of
finite sets α : S → {1, ...,m}, and a collection of morphisms {fj :

⊗
α(i)=j Ci → C ′j }1≤j≤m in

the category C.

• composition: suppose we are given f : [C1, ...,Cn] → [C ′1, ...,C ′m] and g : [C ′1, ...,C ′m] →
[C ′′1 , ...,C ′′k ] in C⊗, determining subsets S ⊆ {1, ..., n} and T ⊆ {1, ...,m} with maps α : S →
{1, ...,m} and β : T → {1, ..., k}. The composition g ◦ f is given by the subset U = α−1T ⊆
{1, ..., n}, the composition map β ◦ α : U → {1, ..., k}, and for 1 ≤ l ≤ k we have⊗

(β◦α)(i)=l

Ci '
⊗

β(j)=l

⊗
α(i)=j

Ci →
⊗

β(j)=l

C ′j → C ′′l
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Inside C we can consider an invertible object: X such that there exists X ∗ ∈ C and X ⊗ X ∗ ∼=
idC ∼= X ∗ ⊗X . Let Cat∞ be the category of infinite categories, then C⊗ is an object in CAlg(Cat∞).
Let ModC⊗(Cat∞) be the category where the objects are ∞-categoriesM that are C⊗-modules (i.e.
have a C-actionM× C→M). It is a fact that CAlg(ModC⊗(Cat∞)) ∼= CAlg(Cat∞)C⊗/.

On one side we consider the full subcategory CAlg(Cat∞)X
C⊗/ ⊆ CAlg(Cat∞)C⊗/, which ob-

jects are monoidal maps C⊗ → D⊗ begining with C⊗ and sending X to an invertible object in D.
On the other side, let SX to be the collection of morphisms in CAlg(Cat∞)C⊗/:

C⊗

zz $$
FreeC⊗(C)

FreeC⊗ (X⊗−)
// FreeC⊗(C)

This is a single morphism collection, and Free⊗C (−) is the left adjoint functor of the forgetful
functor U : CAlg(Cat∞)C⊗/

∼= CAlg(ModC⊗(Cat∞)) → ModC⊗(Cat∞). If we consider the
category CAlg(Cat∞)C⊗/ localized at SX , we see that it is actually the same as CAlg(Cat∞)X

C⊗/.

Proposition 5.2 (part of Theorem 2.1 in [Rob]). There is a categorical equivalence

CAlg(Cat∞)XC⊗/
∼= CAlg(Cat∞)C⊗/[S−1

X ]

Let PrL be the full subcategory of all the representable ∞-categories, then the inclution CAlg(Cat∞)X
C⊗ ↪→

CAlg(Cat∞)C⊗ has a left adjoint, and the following square commutes:

CAlg(PrL)X
C⊗/

U
��

CAlg(PrL)C⊗/

U
��

Loo

ModC⊗ [X−1](PrL) ModC⊗(PrL)
C⊗ [X−1]⊗−
oo

The bottom line is the change of ring functor, in particular sending C to C[X−1]. This construc-
tion is universal due to the previous proposition and the universal property of localization.

Remark 5.3. However inverting an object in C⊗ is not as clean and neat as you think. We will not
talk about the definition of the category C⊗[X−1] since the change of ring functor works analo-
gously. See Definition 2.6 (2.36) in [Rob] for details.

How do we rain down these abstract clouds? In the case we care, let C to be Top or GTop∗ with
smash product ∧ and unit S0, let X to be S1 with trivial G -action, then C[X−1] will be Sp or GSp,
respectively. But hold on, this is not at all easy to see. We need further assume X to be symmetric
object.

Definition 5.4 (Definition 2.16 (2.93) in [Rob]). Let C be a symmetric monoidal category and let X
be an object in C. We say that X is symmetric if there is a 2-equivalence in C between the cyclic
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permutation (123) and the identity. i.e. we would like the existence of a 2-cell as a homotopy
between (123) and the identity.

X ⊗ X ⊗ X
(123) //

id
��

X ⊗ X ⊗ X

X ⊗ X ⊗ X

id

77

Here is a hint why the 3-cycle is considered. Let’s try to plug in X to be S1 in Top, then we
know the switch map from S1 ∧ S1 to itself has degree −1, thus can not be homotopic to the iden-
tity. This issue is fixed by considering the 3-cycle (123), as it decomposes into two 2-cycles.

If we have X to be symmetric (which we do, since (123) on S1 ∧ S1 ∧ S1 is already homotopic
to the identity in spaces), then we can find the connection between C[X−1] and StabX (C), where
for a C⊗-moduleM, StabX (M) is defined as the colimit of the sequence

... X⊗−−−−→M X⊗−−−−→M X⊗−−−−→M X⊗−−−−→ ...

Theorem 5.5 (Corollary 2.22 (2.106) in [Rob]). Let C⊗ be a presentable symmetric monoidal ∞-category
and let X be a symmetric object in C. Given a C⊗-moduleM, we have

C⊗[X−1]⊗M→ StabX (M)

is an equivalence. In particular, C⊗[X−1] is equivalent to the stablization StabX (C
⊗).

There is a
model cate-
gory version
of this state-
ment, see
Hovey’s
SPECTRA
AND SYM-
METRIC
SPECTRA IN
GENERAL
MODEL CAT-
EGORIES
Theorem 9.3
(or 10.3).

We need one more brick to build the bridge from the stabilization mentioned in previous talks,
in which Sp(C) for a presentable ∞-category C is defined as Exc∗(Sfin

∗ ,C) in [5], 1.4.2.8. (And
let us move things from 1-Cat to Cat∞, that is to say Top∗ is S∗ now, plus we need a version of
the ∞-category of G -spaces. It turns out that SG

∗ := Fun(OrbopG ,S∗) will satisfy the properties we
want.)

Combining the result from [5] 4.8.1.23 and [Rob] 2.10 (2.50) and 2.25 (2.115), Sp can be identified
as a homotopy limit of the tower in Cat∞

... Ω−→ S∗
Ω−→ S∗

Which is also the homotopy colimit of

S∗
Σ−→ S∗

Σ−→ ...

with some modification called ”Ind”. This is because the later homotopy colimit fails to encode
the negative connectivity of the spectra (it would give things bounded below), and the Ind con-
struction will add that back. See detailed Ind construction in [4] 5.3.5.

Therefore we have Ind(StabS1(S∗)) ' Sp. Replacing S∗ with SG∗ we obtain the ∞-category of
naı̈ve G -spectra GSp.

Remark 5.6. The author was suggested that if inverting the regular representation sphere Sρ in-
stead of S1 in SG∗ , we would obtain the ∞-category of genuine G -spectra. There are a few points
to check:
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• The (co)limits we are considering are filtered;

• Sρ is a symmetric object in SG∗ .

Checking these are good exercises at least for myself. The author appreciate all the comments and
suggestions.
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