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1 Motivation

Fix a compact Lie group G and a complete G -universe U . The main goal of this
talk is to give an introduction to equivariant stable homotopy theory and its point-
set model SpO

G , the category of orthogonal G -spectra. After the point-set model
is built, we will introduce some basic constructions of orthogonal G -spectra while
restricting to the case when G is a finite group.

In order to motivate the definition, let’s first consider the equivariant Spanier-
Whitehead category. The equivariant Spanier-Whitehead category SWG has objects
finite pointed G -CW complexes, and morphisms between objects X and Y are
defined as the stablization in the universe U :

tX , Y uG :“ colimVĂU rΣ
V X , ΣV Y sG

as we have seen in the last talk, if the group G is finite then this is an finitely
generated abelian group.

There is also an equivariant Spanier-Whitehead duality analogous to the non-
equivariant one we have already seen on the first day. If we want formal dual in
the sense of duality in closed symmetric monoidal category, then we need to add
virtual representation spheres S´V for all finite dimensional representation V to the
Spanier-Whitehead category SWG . Now if we embed a G -CW complex X to a
representation sphere SV , then there is a G -CW complex Y and S´V ^ Y is the
dual of X in the enlarged Spanier-Whitehead category.

However, the category SWG has some deficiencies to do stable homotopy theory,
for example, it is neither complete or cocomplete.

In the following, we are going to construct a category SpO
G so that it (at least)

satisfies all of the following properties:

• SpO
G is a bicomplete closed symmetric monoidal category

• The equivariant Spanier-Whitehead category SWG embedds fully-faithfully
into the homotopy category of SpO

G .

• After specifying the weak equivalences in SpO
G , the homotopy category of SpO

G

is a triangulated category analogous to the stable homotopy category.

1



2 The category SpO
G of orthogonal G -spectra

The main references of this section are [GHT] and [Sch]. Let G be a compact
Lie group. We will use SpO

G to denote the category of orhogonal G -spectra, as a
point-set model for equivariant stable homotopy theory. Since we have already seen
the definition of orthogonal spectra on the first day, we will also follow [GHT] for
the definition of orthogonal G -spectra.

Let’s first recall the definition from the first day. Denote LpV , W q the set of all
linear embeddings for a pair of finite dimensional real inner product spaces V and W .
Define ξpV , W q :“ tpw ,φq P W ˆ LpV , W q | w P φpV qKu the ”complementary”
vector bundle over LpV , W q. We denote OpV , W q as the Thom space of this
bundle, which is the morhpism class of an indexing category O. The objects of O
are finite dimensional real inner product spaces. Note that if dimpW q ă dimpV q,
then OpV , W q is just a point. If dimpW q ą dimpV q, then OpV , W q is a wedge of
spheres SW´φpV q one for each linear embedding φ : V Ñ W . If dimpW q “ dimpV q,
then OpV , W q “ LpV , W q`. An orthogonal spectrum is a based continuous functor
from O and Top˚.

Definition 2.1. [GHT][Definition 3.1.7] Let TopG
˚ denote the category of based

G -spaces with equivariant morphisms. An orthogonal G -spectrum is a based con-
tinuous functor from O to TopG

˚ . We denote the category of orthogonal G -spectra
as SpO

G .

Let’s unpack this definition. An orthogonal G -spectrum assigns every real inner
product space V a G -space X pV q. For each pair of inner product spaces V and W ,
we have an equivariant structure map OpV , W q^X pV q Ñ X pW q, which combines
the OpV q-action on X pV q and the structure maps σV ,W : SW´V ^X pV q Ñ X pW q

for every embedding V ãÑ W . Moreover, all the compatibility conditions are packed
in the functoriality.

Remark 2.2. As every n-dimensional real inner product space V is isomorhpic to
a Euclidean space Rn. The indexing category O has a small skeleton. We can
recover an isomorphic but more explicit definition of orthogonal G -specta as in
[Sch][Definition 2.1]. An orthogonal G -spectrum X is determined by the following
data:

• a based space Xn with a based Opnq ˆ G action for each n ě 0,

• a based G -equivariant structure map σn : Xn ^ S1 Ñ Xn`1 for each n ě 0,
where G acts trivially on S1,

• For all m, n ě 0, the iterated structure map:

Sm ^ Xn
Sm´1

^σn
ÝÝÝÝÝÝÑ Sm´1 ^ X1`n

Sm´2
^σn´1

ÝÝÝÝÝÝÝÑ ¨ ¨ ¨
σm´1`n
ÝÝÝÝÑ Xm`n

is Opmq ˆ Opnq-equivariant.

2



Remark 2.3. We should also remark that the above definition is not the same as
those given in [HHR]. In [HHR], they define the indexing category OG with objects
all finite dimensional G -representations and with morphism OG pV , W q “ OpV , W q

as a based space equipped with a G -action by conjugation. Denote TopG the
topological G -category of G -spaces with non-equivariant maps. An orthogonal G -
spectrum [HHR][Definition A.13] is a based continuous, enriched functor from OG

to TopG .
However, these two definitions are equivalent (as explained in [Sch][Remark

2.7]). Given an n-dimensional G -representation V and an orthogonal G -spectrum
X, we can use our definition to recover its value at V as:

X pV q :“ LpRn, V q` ^Opnq Xn

where Opnq acts on the right of LpRn, V q by precomposition and X pV q is a G -space
via diagonal action, i.e.

g ¨ rφ, xs :“ rgφ, gxs

for φ P LpRn, V q and x P Xn. We leave it as an exercise to write down the general
structure maps.

We mention again that we are working over a complete G -universe U . This is
important for the homotopy theory of genuine G -spectra.

The category SpO
G is tensored and cotensored over TopG, which means that we

can smash and take function object of a G -space and a G -spectrum levelwise. That
is, if A is a G -space and X is a G -spectrum, then we can define G -spectra A^ X
and MappA, X q levelwise, i.e:

pA^ X qpV q :“ A^ X pV q

where G acts diagonally, and

MappA, X qpV q :“ MappA, X pV qq

where G acts by conjugation.

Notation 2.4. Denote ΣV X :“ SV ^ X and ΩV X :“ MappSV , X q.

Definition 2.5. A homotopy between two maps f , g : E Ñ F of orthogonal G -
spectra is a map of orthogonal G -spectra H : E^ I` Ñ F such that for each V P U ,
HV ,0 “ fV and HV ,1 “ gV .

Given a based G -space A, we can define its suspension spectrum Σ8 A with
value at a G -representation V as Σ8 ApV q :“ SV ^ A.

Now let’s denote rE , F sG the set of homotopy classes of maps from E to F .
Then it’s not hard to check that one has a fully-faithful embedding of SWG into
SpO

G , i.e.:

rΣ8 X , Σ8 Y sG – colimVĂU rΣ
V X , ΣV Y sG “ tX , Y uG

for each pair of finite G -CW complexes X and Y .
Next we will define the equivariant stable homotopy groups of orthogonal G -

spectra associated to the complete G -universe U .
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Definition 2.6. Let X be an orthogonal G -spectrum. For each closed subgroup H
of G , the H-equivariant 0-th stable homotopy group of X is defined as:

πH
0 pX q :“ colimVĂU rS

V , X pV qsH

where r´,´sH denotes the homotopy classes of H-equivariant maps.
For k a positive number, we define the H-equivariant k-th stable homotopy

group of X

πH
k pX q :“ colimVĂU rS

V‘Rk

, X pV qsH

and
πH
´kpX q :“ colimVĂU rS

V , X pV ‘ RkqsH

Definition 2.7. A map f : X Ñ Y of orthogonal G -spectra is a π˚-isomorphism if
it induces isomorphisms on homotopy groups:

πH
n pf q : πH

n pX q Ñ πH
n pY q

for all closed subgroups H and all integer n.

We will now define the smash product on the category SpO
G of orthogonal G -

spectra. We first recall how the smash product is defined for orthogonal spectra.
The smash product of orthogonal G -spectra in our setup is simply the smash product
of the underlying non-equivariant orthogonoal spectra with diagonal G -action.

Let V be a closed symmetric monoidal category and pC,bC , 1Cq be a V-enriched
symmetric monoidal category, then there is a closed symmetric monoidal structure
on the functor category VC . The tensor product is given by Day convolution and the
unit object is given by the corepresented functor V p1C ,´q. Equivalently, the Day
convolution is equivalent to the left Kan extension of the external tensor product,
defined by:

b̄ : VC ˆ VC Ñ VCˆC

pX , Y q ÞÑ bV ˝ pX , Y q

along the tensor product bC : CˆC Ñ C. In our case, we apply the Day convolution
by letting C “ O and V “ Top˚, we then obtain the smash product in the category

of orthogonal spectra SpO .
Since our definition of orthogonal G -spectra are really orthogonal spectra with

G -action, the smash product in SpO
G is the smash product in the underlying non-

equivariant orthogonal spectra with diagonal action. Hence the universal property
also follows:

SpO
GpX ^ Y , Z q – BimorppX , Y q, Z q

where BimorppX , Y q, Z q denotes the class of bimorphisms from pX , Y q to Z .
As a special case of the Day’s theorem [GHT][Theorem C.10], we obtain the

closed symmetric monoidal structure on SpO
G .

Theorem 2.8. The category SpO
G of orthogonal G -spectra is a closed symmetric

monoidal category with monoidal product the smash product ^, and unit object
the equivariant sphere spectrum S.
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3 Wirthmüller Isomorphism and Transfers

In this section, we assume the group G is a finite group. We will give the construc-
tion of the transfer map, induced and coinduced G -spectra and state the Wirthmüller
isomorphism theorem. The main reference is [Sch][Section 4]. For those readers
who are interested in the case with G being a compact Lie group, please refer to
[GHT][Theorem 3.2.15].

3.1 Constructions of the transfer map

Given subgroups K Ď H Ď G , we have a natural map of left cosets G{K Ñ G{H
given by projection. This map lives in the category TopG of G -spaces. The transfer
map is a ”wrong way” map G{H Ñ G{K that lives in SpO

G , that is, a map in
colimVĂU rΣ

V
`G{H, ΣV

`G{K sG .
Let’s choose an H-representation W and an H-equivariant embedding

j : H{K ãÑ W

such an embedding is completely determined by the image w :“ jpHq. Without
loss of generality, we can assume the open unit balls around the image points g ¨w
are pairwise disjoint. Therefore, we get an embedding:

H{K` ^ DpW q Ñ W

The Pontryagin-Thom collaspse map (i.e. sending the complement of the open balls
jpH{K` ^ DpW qq to the point at infinity) gives us a map:

SW Ñ H{K` ^ SW

then compose with G` ^H p´q, we get the desired transfer map:

trHK : G{H` ^ SW Ñ G{K` ^ SW

which represents a map in the equivariant Spanier-Whitehead category SWG . Note
that in the construction of the transfer trHK , we made certain choice of the embedding
H{K ãÑ W . We should remark that different choices would lead to the same class
in the Spanier-Whitehead category SWG .

Example 3.1. Let G “ H “ C3 and K “ teu be the trivial subgroup. We let W
be a C3-representation of C by a rotation of 2

3π around 0. We embed C3{teu into

W as 2, 2e
2
3 πi and 2e

4
3 πi . Then the transfer map in this example is a map:

trC3

teu : SW Ñ pC3q` ^ SW

3.2 Induced and coinduced spectrum

Let H be a subgroup of G . The restriction functor resG
H : SpO

G Ñ SpO
H has a left

adjoint called induction and a right adjoint called coinduction, and both are given by
space level construction G`^H p´q and MapHpG`,´q, where MapHp´,´q denotes
the H-equivariant maps.
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Definition 3.2. Let X be a H-spectrum. The induced G -spectrum G{H` ^ X of
X is defined for any G -representation V :

pG` ^H X qpV q :“ G` ^H X pi˚V q

where i˚V denotes the restriction of V to a H-representation.
The coinduced G -spectrum FHpG`, X q of X is defined for any G -representation

V :
FHpG`, X qpV q :“ MapHpG`, X pi˚pV qq

Exercise 3.3. Write down the structure maps of the induced and coinduced G -
spectra of X .

3.3 Wirthmüller Isomorphism

Finally we are ready to state the Wirthmüller isomorphism.

Theorem 3.4 (Wirthmüller Isomorphism). [Sch][Theorem 4.9] Let H be a subgroup
of G and X an H-spectrum. Then there is a π˚-isomorphism:

G` ^H X » FHpG`, X q

Now let X in the above theorem be the sphere spectrum S, we conclude that
the orbits are self-dual.

Corollary 3.5 (Orbits are self-dual). The Spanier-Whitehead dual of G{H is itself.

4 Derived Fixed points and Adams Isomorphism

4.1 Derived fixed points

Definition 4.1. Let X be an orthogonal G -spectrum. We define the naive fixed
points spectrum XG to be the level-wise G -fixed points of X with restricted Opnq-
action. The structure map

σG
n : S1 ^ XG

n Ñ XG
n`1

is given by the restriction of the equivariant structure map σn : S1 ^ Xn Ñ Xn`1

which makes sense because G acts on S1 trivially.

The naive fixed points is not ”homotopically correct”, i.e. it doesn’t send π˚-
isomorphisms of orthogonal G -spectra to π˚-isomorphisms of orthogonal spectra.
However, the naive fixed points functor can be right derived via replacing a spectrum
X by a π˚-isomorphic G -Ω-spectrum, and then take naive fixed points.

For the purpose of this introduction, let’s omit the technical model structure
issues on SpO

G and assume we have the right derived functor of the naive fixed points

functor denoted by FG : SpO
G Ñ SpO .
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Definition 4.2. Let X be an orthogonal G -spectrum. We call FGX the derived or
genuine fixed point spectrum of X .

One shall see from the following proposition that the derived fixed points spec-
trum FGX capture the G -homotopy type of X .

Proposition 4.3. For every orthogonal G -spectrum X and every integer k, we have
isomorphisms:

πG
k pX q – πkpF

GX q

4.2 Adams Isomorphism

Let X be a finite based G -CW-complex on which G acts cellularly and freely away
from the based point. In the unstable world, the fixed point XG is just a point.
Adams made a surprising result in [Ad], stating that the G -fixed points of X is
isomorphic to the G -orbits in the Spanier-Whitehead category SWG .

This result is a special case for a more general theorem. Let G be a finite
group and N a normal subgroup. Denote j : G Ñ G{N the projection and J the
quotient group G{N. Let Y be a J-CW-complex which we consider as an object in
the J-Spanier-Whitehead category SWJ . Denote j˚Y the G -CW-complex with the
induced G -action via j . Let X {N be the classical N-orbits of X , then X {N carries
a natural J-action. The following is the original version of Adams isomorphism.

Theorem 4.4. [Ad][Theorem 5.4] There is an isomorhpism:

tj˚Y , X uG – tY , X {NuJ

Reich and Varisco [RV] lift this result into the category of orthogonal G -spectra
before passing to stable homotopy category. Let P be a family of subgroups of G ,
we can construct a G -CW complex EP which is universal in the sense that EPH is
contractible whenever H is in P and EPH is empty if H is not in P.

Let FpNq be the family of subgroups H of G such that H X N “ t1u.

Definition 4.5. An orthogonal G -spectrum X is good, if all the structure maps are
closed embedding. An orthogonal G -spectrum X is N-free if the projection

EFpNq` ^ X Ñ X

is a π˚-isomorphism.

For any orthogonal G -spectrum X , they construct a natural map of orthogonal
J-spectra, called the Adams map:

A : EFpNq` ^N X Ñ FNX

Theorem 4.6. [RV][Theorem 1.7] For any good, N-free, orthogonal G -spectrum.
The Adams map A is a π˚-isomorphsim.
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5 Various Fixed Points Construction

In this section, we continue introducing fixed points constructions of orthogonal
G -spectra. These fixed points constructions can be viewed as functors from the
category SpO

G of orthogonal G -spectra to the category SpO of (non-equivariant)
orthogonal spectra.

5.1 Geometric Fixed points and Isotropy Separation Sequence

Let’s denote ρG “ RrG s the regular representation of the finite group G . The
geometric fixed points ΦGX P Sp of a G -spectrum X is defined by:

ΦGX pV q :“ X pρG b V qG

for a G -representation V , and with structure maps:

SW´V ^ΦGX pV q – pSpW´V qbρG ^X pρG bV qqG
σG
V ,W
ÝÝÝÑ X pρG bW qG “ ΦGX pW q

for every G -embedding V ãÑ W .

Example 5.1. The geometric fixed points functor commutes with the suspension
functor in the sense that the geometric fixed points ΦG pΣ8Y q is isomorphic to the
suspension spectrum Σ8Y G for any based G -space Y . This can be seen using the
G -fixed points of the regular representation ρG is R

ΦG pΣ8Y qpV q “ pY ^ SVbρG qG – Y G ^ SV “ Σ8Y G pV q

for any G -representation V .

There is another way of constructing the geometric fixed point functor, for
example as in [HHR]. Denote P the family of all proper subgroups of G . We
can construct a G -CW complex EP which is universal in the sense that EPH is
contractible whenever H is a proper subgroup and EPG is empty. For example, this
can be done by taking colimn Spnρ̄G q, where Spnρ̄G q is the unit sphere in nρ̄G .

Definition 5.2. The isotropy separation sequence is the cofiber sequence:

EP` Ñ S0 ÑĄEP

where the first map is sending EP to the non-based point. By the above definition

of ĄEP, we see that it can be characterized by the universal property that ĄEP
H
» S0

for any proper subgroup H and ĄEP
G
» ˚.

In [HHR], the geometric fixed point of a G -spectrum X is defined to be the de-

rived fixed point spectrum of ĄEP^X . These two definitions coincide for orthogonal
G -spectra.
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Proposition 5.3. [Sch][Proposition 7.6] For any orthogonal G -spectrum X , we
have a map of spectra called evaluation map

ev : FG pĄEP ^ X q Ñ ΦGX

such that for any G -representation W P U , we have a weak equivalence evpW q :
FG pẼP ^ X pW qq Ñ ΦGX pW q.

So in particular, the above evaluation map is a π˚-isomorphism. Furthermore
by Proposition 4.3, we see that the geometric fixed points functor is also homotopy
invariant.

Let’s wrap up the discussion of geometric fixed points by summarizing its prop-
erties, despite lacking the time to prove all of them:

Remark 5.4. The geometric fixed points functor ΦG : SpG
U Ñ Sp has the following

properties

1. ΦG is homotopy invariant which means it preserves π˚-isomorphism

2. ΦG commutes with suspension, i.e. ΦGΣ8AG – Σ8AG for any based G -CW
complex A

3. ΦG is symmetric monoidal

4. ΦG commutes with filtered homotopy colimits

5.2 Homotopy Fixed points and Tate Construction

In this section, we’ll see the homotopy fixed points, homotopy orbits and Tate
constructions following [GM].

Recall that the fixed point functor p´qG in the category of G -spaces doesn’t
preserve weak equivalences. And we have seen that homotopy fixed points can ac-
tually detect (non-equivariant) weak equivalences of G -spaces. The homotopy fixed
points of a G -space A is given by the space of G -equivariant maps MapG pEG`, Aq
and the homotopy orbits is given by its Borel construction EG` ^G A.

Now we define the stable analogue of homotopy fixed points and homotopy
orbits.

Definition 5.5. The homotopy fixed points X hG of a G -spectrum X is defined as
the (derived) fixed point spectrum FG pF pEG`, X qq and the homotopy orbits XhG

is defined as EG` ^G X .

Denote ĂEG :“ cofibpEG` Ñ S0q. Since smashing with X preserves cofiber
sequence, we have another cofiber sequence:

EG` ^ X Ñ X Ñ ĂEG ^ X
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And by the isomorphism X – F pS0, X q, we get a map X – F pS0, X q Ñ F pEG`, X q.
This induces a diagram:

EG` ^ X X ĂEG ^ X

EG` ^ F pEG`, X q F pEG`, X q ĂEG ^ F pEG`, X q

»

It turns out that the left vertical map is always a π˚-isomorphism [GM][Proposition
1.2] and FG pEG` ^ X q » XhG as a special case of the Adams isomorphism, hence
after taking the (derived) fixed points FG one has the following diagram

XhG FGX FG pĂEG ^ X q

XhG X hG X tG

»

norm

where the right square is a pullback diagram and the lower right corner X tG is called
the Tate spectrum of X .

Moreover, if we take G to be a prime order cyclic group Cp, then EG » EP
and the top right corner becomes the geometric fixed point ΦGX of X .

5.3 Tate Construction via 8-category

We give a short explanation of the Tate construction in the modern 8-categorical
language following [NS]. The name comes from the following known fact: one
should recover the Tate cohomology Ĥ˚pG ; Mq for a G -module M, when we com-
pute the homotopy groups π˚pHM tG q of the Tate spectrum of the Eilenberg-
Maclane spectrum of M.

Let’s fix a finite group G . Let C be an 8-category and BG be the classifying
space of G .

Definition 5.6. A G -equivariant object in C is a functor (i.e. a map of simplicial
sets) from BG to C. We denote CBG the 8-category of G -equivariant objects in C.

Definition 5.7. Let C be an 8-category in which colimits and limits indexed over
BG exist. Define the homotopy orbits functor

p´qhG : CBG Ñ C
F ÞÑ colimBG F

and homotopy fixed points functor

p´qhG : CBG Ñ C
F ÞÑ lim

BG
F
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Let p : BG Ñ ˚ be the canonical projection and p˚ : C Ñ CBG be the pullback
functor. Then p´qhG is left adjoint to p˚ and p´qhG is right adjoint to p˚. Let’s
put this into a more general context. Let f : X Ñ Y be a map of Kan complexes,
denote f! and f˚ the left adjoint and right adjoint functors of p˚, respectively. We
will construct the norm map as a natural transformation Nmf : f! Ñ f˚, So the
norm map in our interest becomes a special case.

We still need to impose some conditions on C. The condition we need is to
assume C is a preadditive 8-category, whose definition directly corresponds to the
one in 1-category [HA][Definition 6.1.6.13]. We say that a map of f : X Ñ Y of
Kan complexes is n-truncated if all the homotopy fibers of f has trivial homotopy
groups at degree higher than n. Furthermore, we say a 1-truncated map is a relative
finite groupoid if each fiber of f has finitely many connected components and each
of which is a classifying space of a finite group.

We refer the readers to [NS][Construction I.1.7] for the details of the construction
of the norm transformation and summarize the result in the following proposition.

Proposition 5.8. Let C be a preadditive 8-category which has limits and colimits
over all classifying spaces of finite groups. Let f : X Ñ Y be a relative finite
groupoid of Kan complexes, then both the left adjoint f! and right adjoint f˚ of f ˚

exist, and there is a natural transformation :

Nmf : f! Ñ f˚

Now we can define the Tate construction in a stable 8-category C.

Definition 5.9. Let C be a stable 8-category which admits all limits and colimits
over BG . The Tate construction is the cofiber

p´qtG : CBG Ñ C
X ÞÑ X tG :“ cofibpNmG : XhG Ñ X hG q

For our interest, we consider the Tate construction in Sp the 8-category of
spectra.

Example 5.10. If we take the Eilenberg-Maclane spectrum HM of the G -module
M, then we recover the usual Tate cohomology via taking the homotopy groups of
the Tate spectrum of HM tG

π˚pHM tG q – Ĥ´˚pG , Mq

6 tom Dieck Splitting Theorem

The naive fixed points functor p´qG has some nice properties. One of them is that
p´qG commutes with suspension functor, i.e.

Σ8AG – pΣ8AqG

for any based G -space A. However, the derived fixed points functor FG does not
behave that well with suspension. The tom Dieck splitting theorem measures the
difference of commuting suspension and taking derived fixed points spectrum.
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Theorem 6.1 (tom Dieck splitting). Let G be a finite group and A a G -space.
Then we have decompositions of the derived fixed points and equivariant stable
homotopy groups of the suspension spectrum Σ8A of A:

FG pΣ8Aq »
ł

pHqĎG

Σ8EWH` ^WH AH (1)

πG
˚ pΣ

8Aq –
à

pHqĎG

πWH
˚ pΣ8EWH` ^ AHq (2)

where the index pHq Ď G means the sum is running over all the conjugacy classes
of subgroups of G and WH is the Weyl group WH :“ NGH{H of H.

As an application of the tom Dieck splitting theorem, let’s identify πG
0 pSq, the

0-th equivariant stable homotopy group of the sphere spectrum. We let X “ S0,
viewed as a trivial G -space in (2) of the above theorem. Then the left-hand side
becomes πG

0 pSq, the right-side becomes

à

pHqĎG

πWH
0 pΣ8EWH`q

a direct sum over the conjugacy classes of subgroups of G .
We first show that each summand πWH

0 pΣ8EWH`q is isomorphic to Z additively.
Let H be a finite group and EH a contractible CW-complex on which H acts freely.
Choose a point x P EH, then it induces an H-equivariant map a : H Ñ EH
by h ÞÑ h ¨ x . As EH is path-connected, the homotopy type of the map a is
independent of the chosen point x and so is the induced map on suspension spectrum
Σ8 H` Ñ Σ8 EH`.

Lemma 6.2. The following composite is an isomorphism:

π0pSq
TrHe
ÝÝÑ
–

πH
0 pΣ

8 H`q
π0paq
ÝÝÝÑ πH

0 pΣ
8 EH`q

where the first map is the external transfer isomorphism as defined in [Sch][Definition
4.12].

The above lemma tells us that there is an isomorphism of abelian groups

πG
0 pSq –

à

pHqĎG

Z

Moreover, the 0-th equivariant stable homotopy group has a ring structure. Let
f : SV Ñ SV and g : SW Ñ SW represent two classes in πG

0 pSq, then we define

their product in πG
0 pSq as the class represented by SV‘W f^g

ÝÝÑ SV‘W . We recall the
Burnside ring ApG q of a finite group G is the group completion of the isomorphism
classes of finite G -sets under direct sum and the multiplication is given by product
of G -sets. Note that the Burnside ring ApG q has a Z-basis given by the cosets

 

rG{Hs | H runs over all representatives of conjugacy classes of subgroups of G
(
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Hence the Burnside ring ApG q is additively isomorphic to the equivariant 0-stem
πG

0 pSq. We define a map σG : ApG q Ñ πG
0 pSq by sending the basis rG{Hs to

trGH p1Hq, where 1H represents the identity in πH
0 pSq.

Theorem 6.3. [Sch][Theorem 6.14] For every finite group G, the map

σG : ApG q Ñ πG
0 pSq

is a isomorphism of rings. Moreover, the isomorphisms σG commute with transfer
and restriction along group homomorphisms.

Remark 6.4. The above isomorhpism is actually an isomorphism of Mackey functors
whose definitions will be given in Jonathan’s talk.

7 Norm Construction

The norm construction is a ”multiplicative transfer”. Namely, it is the left adjoint
functor of the restriction functor from commutative G -ring spectra to commutative
H-ring spectra. The main reference for this section is [Sch]. We now introduce the
norm construction for orthogonal G -spectra.

Let G be a finite group and H a subgroup of index m. Let xG : Hy denote the
set of m-tuples such that their classes in G{H give a partition of G . That is,

xG : Hy :“ tpg1, ... , gmq P Gm | G “

m
ď

i“1

giHu

Recall the wreath product Σm o H is the semi-direct product Σm ˙ Hm with multi-
plication:

pσ; h1, ... , hmq ¨ pτ ; k1, ... , kmq “ pστ ; hτp1qk1, ... , hτpmqkmq

The wreath product acts from the right on xG : Hy by

pg1, ... , gmq ¨ pσ; h1, ... , hmq “ pgσp1qh1, ... , gσpmqhmq

Denote X pmq the m-fold symmetric product of an orthogonal H-spectrum X . The
symmetric group Σm acts on X pmq by permuting factors. The group H acts on each
factor and combines to an action of Hm on X pmq. Therefore, we have an action of
the wreath product Σm o H on X pmq. Symbolically, this action reads as

pσ; h1, ... , hmq ¨ px1, ... , xmq :“ phσ´1p1qx1, ... , hσ´1pmqxmq

We denote the obtained orthogonal Σm o H-spectrum by PmX .

Definition 7.1. Let H be a subgroup of G with rG : Hs “ m. The norm of an
orthogonal H-spectrum X is the orthogonal G -spectrum defined by

NG
H X :“ xG : Hy` ^ΣmoH PmX
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The norm NG
H X has the following properties.

Proposition 7.2. 1. The underlying orthogonal spectrum is isomorphic to X pmq.

2. The norm functor commutes with smash products up to isomorphism in SpO
G ,

i.e.
NG

H pX ^ Y q – NG
H X ^ NG

H Y

3. For each H-ring spectrum R, its norm NG
H R is a G -ring spectrum. Its multi-

plication map is given by the following composite

NG
H R ^ NG

H R – NG
H pR ^ Rq

NG
Hµ
ÝÝÝÑ NG

H R

4. For nested subgroups K Ď H Ď G and every K -spectrum X , the G-spectra
NG

H pN
H
K X q and NG

K X are naturally isomorphic.

5. The norm functor NG
H preserves π˚-isomorphisms between cofibrant objects

in SpO
H , hence it can be left derived to a functor on homotopy category

HopSpO
H q Ñ HopSpO

G q.

6. For every cofibrant orthogonal H-spectrum X , there is π˚-isomorphism

ΦHX » ΦGNG
H X

14
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