Coefficients of equivariant complex cobordism

Yunze Lu
University of Michigan

August, 2019

Complex cobordism

- Complex manifolds: Compact smooth manifolds, with a tangential stable almost complex structure.
- Two closed manifolds are cobordant, if their disjoint union is the boundary of a third manifold.
- This is an equivalent relation.
- Complex cobordism ring Ω_{*}^{U} (graded), under disjoint union and Cartesian product.

Complex cobordism

- Complex manifolds: Compact smooth manifolds, with a tangential stable almost complex structure.
- Two closed manifolds are cobordant, if their disjoint union is the boundary of a third manifold.
- This is an equivalent relation.
- Complex cobordism ring Ω_{*}^{U} (graded), under disjoint union and Cartesian product.

Complex cobordism

- Complex manifolds: Compact smooth manifolds, with a tangential stable almost complex structure.
- Two closed manifolds are cobordant, if their disjoint union is the boundary of a third manifold.
- This is an equivalent relation.
- Complex cobordism ring Ω_{*}^{U} (graded), under disjoint union and Cartesian product.

Complex cobordism

- Complex manifolds: Compact smooth manifolds, with a tangential stable almost complex structure.
- Two closed manifolds are cobordant, if their disjoint union is the boundary of a third manifold.
- This is an equivalent relation.
- Complex cobordism ring Ω_{*}^{U} (graded), under disjoint union and Cartesian product.

Thom's Theorem

- Thom space $\operatorname{Th}(\xi)$.
- Universal n-complex bundle γ^{n}.
- Thom's homomorphism: $\tau: \pi_{k+2 n} T h\left(\gamma^{n}\right) \rightarrow \Omega_{k}^{U}$.

Theorem (Thom, 54)
τ is an isomorphism for large n.
Those Thom spaces could be assembled to form a spectrum called $M U$, and $\Omega_{*}^{U} \cong \pi_{*} M U$.

Theorem (Milnor, Novikov, 60)
$M U_{*}=\pi_{*} M U=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ where $x_{i} \in \pi_{2 i} M U$.

Thom's Theorem

- Thom space $\operatorname{Th}(\xi)$.
- Universal n-complex bundle γ^{n}.
- Thom's homomorphism: $\tau: \pi_{k+2 n} \operatorname{Th}\left(\gamma^{n}\right) \rightarrow \Omega_{k}^{U}$.

Theorem (Thom, 54)
τ is an isomorphism for large n.
Those Thom spaces could be assembled to form a spectrum called $M U$, and $\Omega_{*}^{U} \cong \pi_{*} M U$.

Theorem (Milnor, Novikov, 60)
$M U_{*}=\pi_{*} M U=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ where $x_{i} \in \pi_{2 i} M U$.

Thom's Theorem

- Thom space $\operatorname{Th}(\xi)$.
- Universal n-complex bundle γ^{n}.
- Thom's homomorphism: $\tau: \pi_{k+2 n} \operatorname{Th}\left(\gamma^{n}\right) \rightarrow \Omega_{k}^{U}$.

Theorem (Thom, 54)

τ is an isomorphism for large n.
Those Thom spaces could be assembled to form a spectrum called $M U$, and $\Omega_{*}^{U} \cong \pi_{*} M U$.

Theorem (Milnor, Novikov, 60)
$M U_{*}=\pi_{*} M U=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ where $x_{i} \in \pi_{2 i} M U$

Thom's Theorem

- Thom space $\operatorname{Th}(\xi)$.
- Universal n-complex bundle γ^{n}.
- Thom's homomorphism: $\tau: \pi_{k+2 n} \operatorname{Th}\left(\gamma^{n}\right) \rightarrow \Omega_{k}^{U}$.

Theorem (Thom, 54)
τ is an isomorphism for large n.
Those Thom spaces could be assembled to form a spectrum called $M U$, and $\Omega_{*}^{U} \cong \pi_{*} M U$.

Theorem (Milnor, Novikov, 60)
$M U_{*}=\pi_{*} M U=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ where $x_{i} \in \pi_{2 i} M U$

Thom's Theorem

- Thom space $\operatorname{Th}(\xi)$.
- Universal n-complex bundle γ^{n}.
- Thom's homomorphism: $\tau: \pi_{k+2 n} \operatorname{Th}\left(\gamma^{n}\right) \rightarrow \Omega_{k}^{U}$.

Theorem (Thom, 54)
τ is an isomorphism for large n.
Those Thom spaces could be assembled to form a spectrum called $M U$, and $\Omega_{*}^{U} \cong \pi_{*} M U$.

Theorem (Milnor, Novikov, 60)
$M U_{*}=\pi_{*} M U=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ where $x_{i} \in \pi_{2 i} M U$

Thom's Theorem

- Thom space $\operatorname{Th}(\xi)$.
- Universal n-complex bundle γ^{n}.
- Thom's homomorphism: $\tau: \pi_{k+2 n} \operatorname{Th}\left(\gamma^{n}\right) \rightarrow \Omega_{k}^{U}$.

Theorem (Thom, 54)
τ is an isomorphism for large n.
Those Thom spaces could be assembled to form a spectrum called $M U$, and $\Omega_{*}^{U} \cong \pi_{*} M U$.

Theorem (Milnor, Novikov, 60)
$M U_{*}=\pi_{*} M U=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ where $x_{i} \in \pi_{2 i} M U$.

Homotopical equivariant complex cobordism $M U_{G}$

- Compact Lie group G.
- Complete universe \mathcal{U}.
- BU(n): G-space of n-dimensional complex subspaces of \mathcal{U}.
- Universal n-complex G-vector bundle γ_{G}^{n}
- Complex finite dimensional representation V: G-vector bundle over a point.

Homotopical equivariant complex cobordism $M U_{G}$

- Compact Lie group G.
- Complete universe \mathcal{U}.
- BU(n): G-space of n-dimensional complex subspaces of \mathcal{U}.
- Universal n-complex G-vector bundle γ_{G}^{n}.
- Complex finite dimensional renresentation V : G-vector bundle over a point.

Homotopical equivariant complex cobordism $M U_{G}$

- Compact Lie group G.
- Complete universe \mathcal{U}.
- BU(n): G-space of n-dimensional complex subspaces of \mathcal{U}.
- Universal n-complex G-vector bundle γ_{G}^{n}.
- Complex finite dimensional representation V : G-vector bundle over a point.

Homotopical equivariant complex cobordism $M U_{G}$

- Compact Lie group G.
- Complete universe \mathcal{U}.
- BU(n): G-space of n-dimensional complex subspaces of \mathcal{U}.
- Universal n-complex G-vector bundle γ_{G}^{n}.
- Complex finite dimensional representation V: G-vector bundle over a point.

Homotopical equivariant complex cobordism $M U_{G}$

- Compact Lie group G.
- Complete universe \mathcal{U}.
- BU(n): G-space of n-dimensional complex subspaces of \mathcal{U}.
- Universal n-complex G-vector bundle γ_{G}^{n}.
- Complex finite dimensional representation V : G-vector bundle over a point.

Homotopical equivariant complex cobordism $M U_{G}$

Construction (tom Dieck, 70)
For $V \subset W$, there are classifying $\operatorname{map}(W-V) \times \gamma_{G}^{|V|} \rightarrow \gamma_{G}^{|W|}$.
We have

Let $D_{V}=\operatorname{Th}\left(\gamma_{G}^{|V|}\right)$ with the structured maps described above, then spectrify to obtain $M U_{G}$.
$M U_{G}$ is a genuine multiplicative G-specturm. It is complex stable:

$$
M U_{G}^{*}(X) \cong M U_{G}^{*+2|V|}\left(S^{V} \wedge X\right)
$$

Homotopical equivariant complex cobordism $M U_{G}$

Construction (tom Dieck, 70)

For $V \subset W$, there are classifying $\operatorname{map}(W-V) \times \gamma_{G}^{|V|} \rightarrow \gamma_{G}^{|W|}$.
We have

$$
\operatorname{Th}\left((W-V) \times \gamma_{G}^{|V|}\right) \cong \Sigma^{W-V} \operatorname{Th}\left(\gamma_{G}^{|V|}\right) \rightarrow \operatorname{Th}\left(\gamma_{G}^{|W|}\right) .
$$

Let $D_{V}=\operatorname{Th}\left(\gamma_{G}^{|V|}\right)$ with the structured maps described above, then spectrify to obtain $M U_{G}$.
$M U_{G}$ is a genuine multiplicative G-specturm. It is complex stable:

$$
M U_{G}^{*}(X) \cong M U_{G}^{*+2|V|}\left(S^{V} \wedge X\right)
$$

Homotopical equivariant complex cobordism $M U_{G}$

Construction (tom Dieck, 70)
For $V \subset W$, there are classifying $\operatorname{map}(W-V) \times \gamma_{G}^{|V|} \rightarrow \gamma_{G}^{|W|}$.
We have

$$
\operatorname{Th}\left((W-V) \times \gamma_{G}^{|V|}\right) \cong \Sigma^{W-V} \operatorname{Th}\left(\gamma_{G}^{|V|}\right) \rightarrow \operatorname{Th}\left(\gamma_{G}^{|W|}\right) .
$$

Let $D_{V}=\operatorname{Th}\left(\gamma_{G}^{|V|}\right)$ with the structured maps described above, then spectrify to obtain $M U_{G}$.
$M U_{G}$ is a genuine multiplicative G-specturm. It is complex stable:

$$
M U_{G}^{*}(X) \cong M U_{G}^{*+2|V|}\left(S^{V} \wedge X\right)
$$

Homotopical equivariant complex cobordism $M U_{G}$

Construction (tom Dieck, 70)

For $V \subset W$, there are classifying $\operatorname{map}(W-V) \times \gamma_{G}^{|V|} \rightarrow \gamma_{G}^{|W|}$.
We have

$$
\operatorname{Th}\left((W-V) \times \gamma_{G}^{|V|}\right) \cong \Sigma^{W-V} \operatorname{Th}\left(\gamma_{G}^{|V|}\right) \rightarrow \operatorname{Th}\left(\gamma_{G}^{|W|}\right)
$$

Let $D_{V}=\operatorname{Th}\left(\gamma_{G}^{|V|}\right)$ with the structured maps described above, then spectrify to obtain $M U_{G}$.
$M U_{G}$ is a genuine multiplicative G-specturm. It is complex stable:

$$
M U_{G}^{*}(X) \cong M U_{G}^{*+2|V|}\left(S^{V} \wedge X\right)
$$

Geometric equivariant complex cobordism

- Tangential stable almost complex structure for a smooth G-manifold M : equivariant isomorphism to a G-complex vector bundle ξ over M :

$$
T M \times \mathbb{R}^{k} \cong \xi
$$

- Geometric equivariant complex cobordism ring Ω_{*}^{G}.

However,

The Euler class $e_{V} \in \pi_{-2|V|} M U_{G}$ of V is

Fact: $e_{V} \neq 0$ if $V^{G}=0$.

Geometric equivariant complex cobordism

- Tangential stable almost complex structure for a smooth G-manifold M : equivariant isomorphism to a G-complex vector bundle ξ over M :

$$
T M \times \mathbb{R}^{k} \cong \xi
$$

- Geometric equivariant complex cobordism ring Ω_{*}^{G}.

However,

$$
\Omega_{*}^{G} \not \equiv \pi_{*} M U_{G} .
$$

The Euler class $e_{V} \in \pi_{-2|V|} M U_{G}$ of V is

Fact: $e_{V} \neq 0$ if $V^{G}=0$.

Geometric equivariant complex cobordism

- Tangential stable almost complex structure for a smooth G-manifold M : equivariant isomorphism to a G-complex vector bundle ξ over M :

$$
T M \times \mathbb{R}^{k} \cong \xi
$$

- Geometric equivariant complex cobordism ring Ω_{*}^{G}.

However,

$$
\Omega_{*}^{G} \not \equiv \pi_{*} M U_{G} .
$$

The Euler class $e_{V} \in \pi_{-2|V|} M U_{G}$ of V is

$$
S^{0} \rightarrow S^{V} \rightarrow \operatorname{Th}\left(\gamma_{G}^{|V|}\right)
$$

Fact: $e_{V} \neq 0$ if $V^{G}=0$.

Pontryagin-Thom construction

- Take a cobordant class [M].
- Equivariant Whiteny's embedding: $M \hookrightarrow V$.
- The normal bundle ν embeds as a tubular neighborhood.

Pontryagin-Thom constuction gives a composite map

$$
S^{V} \rightarrow \operatorname{Th}(\nu) \rightarrow \operatorname{Th}\left(\gamma_{G}^{|\nu|}\right),
$$

which induces a homomorphism $\Omega_{*}^{G} \rightarrow \pi_{*} M U_{G}$.
The opposite of Thom's homomorphism does not exist, due to transversality issues.

Pontryagin-Thom construction

- Take a cobordant class [M].
- Equivariant Whiteny's embedding: $M \hookrightarrow V$.
- The normal bundle ν embeds as a tubular neighborhood.

Pontryagin-Thom constuction gives a composite map

$$
S^{v} \rightarrow \operatorname{Th}(\nu) \rightarrow \operatorname{Th}\left(\gamma_{G}^{|\nu|}\right)
$$

which induces a homomorphism $\Omega_{*}^{G} \rightarrow \pi_{*} M U_{G}$.
The onnosite of Thom's homomornhism does not exist, due to transversality issues.

Pontryagin-Thom construction

- Take a cobordant class [M].
- Equivariant Whiteny's embedding: $M \hookrightarrow V$.
- The normal bundle ν embeds as a tubular neighborhood.

Pontryagin-Thom constuction gives a composite map

which induces a homomorphism $\Omega_{*}^{G} \rightarrow \pi_{*} M U_{G}$.
The opnosite of Thom's homomornhism does not exist, due to transversality issues.

Pontryagin-Thom construction

- Take a cobordant class [M].
- Equivariant Whiteny's embedding: $M \hookrightarrow V$.
- The normal bundle ν embeds as a tubular neighborhood.

Pontryagin-Thom constuction gives a composite map

$$
S^{V} \rightarrow \operatorname{Th}(\nu) \rightarrow \operatorname{Th}\left(\gamma_{G}^{|\nu|}\right)
$$

which induces a homomorphism $\Omega_{*}^{G} \rightarrow \pi_{*} M U_{G}$.
The opposite of Thom's homomorphism does not exist, due to transversality issues.

Pontryagin-Thom construction

- Take a cobordant class [M].
- Equivariant Whiteny's embedding: $M \hookrightarrow V$.
- The normal bundle ν embeds as a tubular neighborhood.

Pontryagin-Thom constuction gives a composite map

$$
S^{V} \rightarrow \operatorname{Th}(\nu) \rightarrow \operatorname{Th}\left(\gamma_{G}^{|\nu|}\right)
$$

which induces a homomorphism $\Omega_{*}^{G} \rightarrow \pi_{*} M U_{G}$.
The opposite of Thom's homomorphism does not exist, due to transversality issues.

History

We expect $M U_{G}$ to play the same key role as $M U$ plays in non-equivariant homotopy theory. $M U$ is the universal complex oriented cohomology theory, and its coefficient ring $M U_{*}$ admits a universal formal group law.

- $G=\mathbb{Z} / p$: Greenlees, May, Kosniowski, Kriz, Strickland,
- $G=S^{1}, T$: Sinha.
- G finite abelian: Abram, Kriz.
- $G=\Sigma_{3}: H u, K r i z, L$.

History

We expect $M U_{G}$ to play the same key role as $M U$ plays in non-equivariant homotopy theory. $M U$ is the universal complex oriented cohomology theory, and its coefficient ring $M U_{*}$ admits a universal formal group law.

- $G=\mathbb{Z} / p$: Greenlees, May, Kosniowski, Kriz, Strickland, ...
- $G=S^{1}, T$: Sinha.
- G finite abelian: Abram, Kriz.
- $G=\Sigma_{3}: \mathrm{Hu}, \mathrm{Kriz}, \mathrm{L}$.

History

Theorem (Comezaña, 96)
If G is abelian, then $\pi_{*} M U_{G}$ is a free $M U_{*}$-module concentrated in even degrees.

In 1997, Greenlees and May proved a localization and completion theorem for $M U_{G}$-module spectra.

Theorem. For G abelian, $\left(M U_{G}^{*}\right) \hat{\jmath} \simeq M U^{*}(B G)$, here J is the kernel of the augmentation map $\left(M U_{G}\right)_{*} \rightarrow M U_{*}$

The augmentation ideal J contains all Euler classes e_{V}.

History

Theorem (Comezaña, 96)
If G is abelian, then $\pi_{*} M U_{G}$ is a free $M U_{*}$-module concentrated in even degrees.

In 1997, Greenlees and May proved a localization and completion theorem for $M U_{G}$-module spectra.

> Theorem. For G abelian, $\left(M U_{G}^{*}\right) \hat{j} \cong M U^{*}(B G)$, here J is the kernel of the augmentation map $\left(M U_{G}\right)_{*} \rightarrow M U_{*}$

> The augmentation ideal I contains all uler classes ev.

History

Theorem (Comezaña, 96)
If G is abelian, then $\pi_{*} M U_{G}$ is a free $M U_{*}$-module concentrated in even degrees.

In 1997, Greenlees and May proved a localization and completion theorem for $M U_{G}$-module spectra.

Theorem. For G abelian, $\left(M U_{G}^{*}\right)_{\jmath} \cong M U^{*}(B G)$, here J is the kernel of the augmentation map $\left(M U_{G}\right)_{*} \rightarrow M U_{*}$.

The augmentation ideal J contains all Euler classes e_{V}.

History

Theorem (Comezaña, 96)
If G is abelian, then $\pi_{*} M U_{G}$ is a free $M U_{*}$-module concentrated in even degrees.

In 1997, Greenlees and May proved a localization and completion theorem for $M U_{G}$-module spectra.

Theorem. For G abelian, $\left(M U_{G}^{*}\right)_{j} \cong M U^{*}(B G)$, here J is the kernel of the augmentation map $\left(M U_{G}\right)_{*} \rightarrow M U_{*}$.

The augmentation ideal J contains all Euler classes e_{V}.

Tate diagram

Consider cofiber sequence of \mathbb{Z} / p-spaces

$$
E \mathbb{Z} / p_{+} \rightarrow S^{0} \rightarrow \widetilde{E \mathbb{Z} / p}
$$

The Tate diagram for $M U_{\mathbb{Z} / p}$:

A closer look

Take fixed points $(-)^{\mathbb{Z} / p}$:

- Tom Dieck computes the geometric fixed point $\Phi^{\mathbb{Z} / p} M U_{\mathbb{Z} / p}$
- The coefficient of the bottom left is $M U^{*}(B \mathbb{Z} / p)$.
- Let F be the universal fgl, $M U^{*}(B \mathbb{Z} / p)=M U_{*}[[u]] /\left([p]_{F} u\right)$.
- The bottom map is localization at u (Greenlees, May).

A closer look

Take fixed points $(-)^{\mathbb{Z} / p}$:

- Tom Dieck computes the geometric fixed point $\Phi^{\mathbb{Z} / p} M U_{\mathbb{Z} / p}$.
- The coefficient of the bottom left is $M U^{*}(B \mathbb{Z} / p)$.
- Let F be the universal fgl, $M U^{*}(B \mathbb{Z} / p)=M U_{*}[[u]] /\left([p]_{F} u\right)$.
- The bottom map is localization at u (Greenlees, May).

A closer look

Take fixed points $(-)^{\mathbb{Z} / p}$:

$$
\begin{gathered}
\left(M U_{\mathbb{Z} / p}\right)^{\mathbb{Z} / p} \longrightarrow \Phi^{\mathbb{Z} / p} M U_{\mathbb{Z} / p} \\
\downarrow \\
\left(F\left(E \mathbb{Z} / p_{+}, M U_{\mathbb{Z} / p}\right)\right)^{\mathbb{Z} / p} \longrightarrow\left(t\left(M U_{\mathbb{Z} / p}\right)\right)^{\mathbb{Z} / p}
\end{gathered}
$$

- Tom Dieck computes the geometric fixed point $\Phi^{\mathbb{Z} / p} M U_{\mathbb{Z} / p}$.
- The coefficient of the bottom left is $M U^{*}(B \mathbb{Z} / p)$.
- Let F be the universal fgl, $M U^{*}(B \mathbb{Z} / p)=M U_{*}[[u]] /\left([p]_{F} u\right)$.
- The bottom map is localization at u (Greenlees, May).

A closer look

Take fixed points $(-)^{\mathbb{Z} / p}$:

$$
\begin{aligned}
&\left(M U_{\mathbb{Z} / p}\right)^{\mathbb{Z} / p} \Phi^{\mathbb{Z} / p} M U_{\mathbb{Z} / p} \\
& \downarrow \\
&\left(F\left(E \mathbb{Z} / p_{+}, M U_{\mathbb{Z} / p}\right)\right)^{\mathbb{Z} / p} \longrightarrow\left(t\left(M U_{\mathbb{Z} / p}\right)\right)^{\mathbb{Z} / p}
\end{aligned}
$$

- Tom Dieck computes the geometric fixed point $\Phi^{\mathbb{Z} / p} M U_{\mathbb{Z} / p}$.
- The coefficient of the bottom left is $M U^{*}(B \mathbb{Z} / p)$.
- Let F be the universal fgl, $M U^{*}(B \mathbb{Z} / p)=M U_{*}[[u]] /\left([p]_{F} u\right)$.
- The bottom map is localization at u (Greenlees, May).

A closer look

Take fixed points $(-)^{\mathbb{Z} / p}$:

$$
\begin{aligned}
&\left(M U_{\mathbb{Z} / p}\right)^{\mathbb{Z} / p} \Phi^{\mathbb{Z} / p} M U_{\mathbb{Z} / p} \\
& \downarrow \\
&\left(F\left(E \mathbb{Z} / p_{+}, M U_{\mathbb{Z} / p}\right)\right)^{\mathbb{Z} / p} \longrightarrow\left(t\left(M U_{\mathbb{Z} / p}\right)\right)^{\mathbb{Z} / p}
\end{aligned}
$$

- Tom Dieck computes the geometric fixed point $\Phi^{\mathbb{Z} / p} M U_{\mathbb{Z} / p}$.
- The coefficient of the bottom left is $M U^{*}(B \mathbb{Z} / p)$.
- Let F be the universal fgl, $M U^{*}(B \mathbb{Z} / p)=M U_{*}[[u]] /\left([p]_{F} u\right)$.
- The bottom map is localization at u (Greenlees, May).

A pullback square

Theorem (Kriz, 99)
There is a pullback square of rings:

Here $\left|b_{i}^{k}\right|=2 i-2$, and ϕ sends b_{i}^{k} to the coefficient of x^{i} in $x+_{F}[k]_{F} u$. In particular, $\phi\left(b_{0}^{k}\right)=[k]_{F} u$.

Generators and relations

Strickland first gives an explicit structure for $M U_{\mathbb{Z} / 2}^{*}$.
Theorem (Strickland, 01) Let the universal formal group law be $F(x, y)=\sum a_{i, j} x^{i} y^{j}$.
$M U_{\mathbb{Z} / 2}^{*}$ is generated over $M U^{*}$ by elements $u, b_{i, j}, q_{i}$ for $i, j \geq 0$ subject to the following relations:

- $b_{0,0}=u, b_{0,1}=1, b_{0, \geq 2}=0$,
- $b_{i, j}-a_{i, j}=u b_{i, j+1}$,
- $q_{0}=0, q_{i}-b_{i, 0}=u q_{i+1}$.
i.e., $M U_{\mathbb{Z} / 2}^{*}=M U^{*}\left[u, b_{i, j}, q_{i} \mid i, j \geq 0\right] / \sim$.

The method is to combine the pullback square with localization and completion theorems.

Generators and relations

Strickland first gives an explicit structure for $M U_{\mathbb{Z} / 2}^{*}$.
Theorem (Strickland, 01) Let the universal formal group law be $F(x, y)=\sum a_{i, j} x^{i} y^{j}$.
$M U_{\mathbb{Z} / 2}^{*}$ is generated over $M U^{*}$ by elements $u, b_{i, j}, q_{i}$ for $i, j \geq 0$ subject to the following relations:

- $b_{0,0}=u, b_{0,1}=1, b_{0, \geq 2}=0$,
- $b_{i, j}-a_{i, j}=u b_{i, j+1}$,
- $q_{0}=0, q_{i}-b_{i, 0}=u q_{i+1}$.
i.e., $M U_{\mathbb{Z} / 2}^{*}=M U^{*}\left[u, b_{i, j}, q_{i} \mid i, j \geq 0\right] / \sim$.

The method is to combine the pullback square with localization and completion theorems.

Generalization

This method generalizes Strickland's result to other \mathbb{Z} / p, even to $\mathbb{Z} /\left(p^{n}\right)$.
Theorem. $M U_{\mathbb{Z} / o}^{*}$ is generated over $M U^{*}$ by elements
$u, b_{i, j}^{k},\left(b_{0,1}^{k}\right)^{-1}, q_{i}$ for $i \geq 0, j \geq 1, k \in(\mathbb{Z} / p)^{\times}$with relations

- $b_{0,1}^{1}=1, b_{0>2}^{1}=0$,
- $b_{i, j}^{k}-a_{i, j}^{k}=u b_{i, j+1}^{k}$,
- $q_{0}=0, q_{i}-c_{i}=u q_{i+1}$.

Here $a_{i, j}^{k}$ is the coefficient of $x^{i} u^{j}$ in $x+_{F}[k] u$, and c_{i} is the coefficient
of u^{i} in $[p] u$.

Generalization

This method generalizes Strickland's result to other \mathbb{Z} / p, even to $\mathbb{Z} /\left(p^{n}\right)$.
Theorem. $M U_{\mathbb{Z} / p}^{*}$ is generated over $M U^{*}$ by elements
$u, b_{i, j}^{k},\left(b_{0,1}^{k}\right)^{-1}, q_{i}$ for $i \geq 0, j \geq 1, k \in(\mathbb{Z} / p)^{\times}$with relations

- $b_{0,1}^{1}=1, b_{0, \geq 2}^{1}=0$,
- $b_{i, j}^{k}-a_{i, j}^{k}=u b_{i, j+1}^{k}$,
- $q_{0}=0, q_{i}-c_{i}=u q_{i+1}$.

Here $a_{i, j}^{k}$ is the coefficient of $x^{i} u^{j}$ in $x+F[k] u$, and c_{i} is the coefficient of u^{i} in $[p] u$.

Main result - notations

- $G=\Sigma_{3}$,
- α is the sign representation of Σ_{3},
- γ is the standard representation of Σ_{3}.

Tate diagram for families, which gives us building blocks:

$$
\begin{gathered}
M U_{\Sigma_{3}} \longrightarrow S^{\infty \alpha} \wedge M U_{\Sigma_{3}} \\
F\left(S(\infty \alpha)_{+}, M U_{\Sigma_{3}}\right) \longrightarrow S^{\infty \alpha \alpha} \wedge F\left(S(\infty \alpha)_{+}, M U_{\Sigma_{3}}\right)
\end{gathered}
$$

Main result - notations

- $G=\Sigma_{3}$,
- α is the sign representation of Σ_{3},
- γ is the standard representation of Σ_{3}.

Tate diagram for families, which gives us building blocks:

Main result - notations

- $G=\Sigma_{3}$,
- α is the sign representation of Σ_{3},
- γ is the standard representation of Σ_{3}.

Tate diagram for families, which gives us building blocks:

Main result - notations

- $G=\Sigma_{3}$,
- α is the sign representation of Σ_{3},
- γ is the standard representation of Σ_{3}.

Tate diagram for families, which gives us building blocks:

Main result

Theorem (Hu, Kriz, L.) The ring $\left(M U_{\Sigma_{3}}\right)_{*}$ is the limit of the diagram of rings:

Outline of computation

- Calculate $M U^{*} B \Sigma_{3}=M U_{*}\left[\left[u_{\alpha}, u_{\gamma}\right]\right] /\left([2] u_{\alpha},\{3\} u_{\gamma}\right)$,
- Calculate $\left(S^{\infty \alpha} \wedge M \cup_{\Sigma_{3}}\right)_{*}$ in the pullback diagram for $\mathcal{F}\left[\Sigma_{3}\right]$,

$\left.M U_{\Sigma_{3}}\right)_{*}$ is product of $\left(\Phi^{\Sigma_{3}} M U_{\Sigma_{3}}\right)_{*}$ and $\left(\Phi^{\mathbb{Z} / 2} M U_{\mathbb{Z} / 2}\right)_{*}$

Outline of computation

- Calculate $M U^{*} B \Sigma_{3}=M U_{*}\left[\left[u_{\alpha}, u_{\gamma}\right]\right] /\left([2] u_{\alpha},\{3\} u_{\gamma}\right)$,
- Calculate $\left(S^{\infty \alpha} \wedge M U_{\Sigma_{3}}\right)_{*}$ in the pullback diagram for $\mathcal{F}\left[\Sigma_{3}\right]$,

$$
\begin{gathered}
S^{\infty \alpha} \wedge M U_{\Sigma_{3}} \longrightarrow \widetilde{E F\left[\Sigma_{3}\right]} \wedge M U_{\Sigma_{3}} \\
S^{\infty \alpha \alpha} \wedge F\left(S(\infty \gamma)_{+}, M U_{\Sigma_{3}}\right) \longrightarrow \widetilde{E \mathcal{F}\left[\Sigma_{3}\right]} \wedge F\left(S(\infty \gamma)_{+}, M U_{\Sigma_{3}}\right)
\end{gathered}
$$

Outline of computation

- Calculate $M U^{*} B \Sigma_{3}=M U_{*}\left[\left[u_{\alpha}, u_{\gamma}\right]\right] /\left([2] u_{\alpha},\{3\} u_{\gamma}\right)$,
- Calculate $\left(S^{\infty \alpha} \wedge M U_{\Sigma_{3}}\right)_{*}$ in the pullback diagram for $\mathcal{F}\left[\Sigma_{3}\right]$,

$\left(S^{\infty \alpha} \wedge M U_{\Sigma_{3}}\right)_{*}$ is product of $\left(\Phi^{\Sigma_{3}} M U_{\Sigma_{3}}\right)_{*}$ and $\left(\Phi^{\mathbb{Z} / 2} M U_{\mathbb{Z} / 2}\right)_{*}$.

Outline of computation (continued)

Calculate $\left(F\left(S(\infty \alpha)_{+}, M U_{\Sigma_{3}}\right)_{*}\right.$, it is the limit of the diagram of rings (glueing pullback diagrams):

Outline of computation (continued)

The bottom map is inversion of u_{α}.
Put it altogether, R is the pullback of the following diagram:

$M U_{*}\left[\left(u_{\gamma}\right)^{ \pm 1}, b_{2 i}^{\gamma}\right]\left[\left[u_{\alpha}\right]\right] /[2] u_{\alpha} \longrightarrow u_{\alpha}^{-1} M U_{*}\left[\left(u_{\gamma}\right)^{ \pm 1}, b_{2 i}^{\gamma}\right]\left[\left[u_{\alpha}\right]\right] /[2] u_{\alpha}$

Outline of computation (continued)

The bottom map is inversion of u_{α}.
Put it altogether, R is the pullback of the following diagram:

$$
M U_{*}\left[\left(u_{\gamma}\right)^{ \pm 1}, b_{2 i}^{\gamma}\right]\left[\left[u_{\alpha}\right]\right] /[2] u_{\alpha} \longrightarrow u_{\alpha}^{-1} M U_{*}\left[\left(u_{\gamma}\right)^{ \pm 1}, b_{2 j}^{\gamma}\right]\left[\left[u_{\alpha}\right]\right] /[2] u_{\alpha}
$$

Main result

Theorem (Hu, Kriz, L.) The ring $\left(M U_{\Sigma_{3}}\right)_{*}$ is the limit of the diagram of rings:

Equivariant formal group laws

Non-equivariantly, $k[[y]] \rightarrow k[[y \otimes 1,1 \otimes y]]$.
For finite abelian group A : (Cole, Greenlees, Kriz, 00),

- A commutative topological Hopf k-algebra (R, Δ), complete at ideal I,
- A map $\theta: R \rightarrow k^{A^{*}}\left(A^{*}=\operatorname{Hom}\left(A, S^{1}\right)\right)$ of Hopf k-algebras, and $I=\operatorname{ker}(\theta)$,
- A reqular element $y(\epsilon) \in R$ that generates $\operatorname{ker}\left(\theta_{c}\right)$, and $R / \operatorname{ker}\left(\theta_{\epsilon}\right) \cong k$.
There exists universal ring L_{A}, such that $\mathrm{A}-\mathrm{fgl}(k) \cong \operatorname{Ring}\left(L_{A}, k\right)$.

Equivariant formal group laws

Non-equivariantly, $k[[y]] \rightarrow k[[y \otimes 1,1 \otimes y]]$.
For finite abelian group A: (Cole, Greenlees, Kriz, 00),

- A commutative topological Hopf k-algebra (R, Δ), complete at ideal I,
- $A \operatorname{map} \theta: R \rightarrow k^{A^{*}}\left(A^{*}=\operatorname{Hom}\left(A, S^{1}\right)\right)$ of Hopf k-algebras, and $I=\operatorname{ker}(\theta)$,
- A regular element $y(\epsilon) \in R$ that generates $\operatorname{ker}\left(\theta_{\epsilon}\right)$, and $R / \operatorname{ker}\left(\theta_{\epsilon}\right) \cong k$.

There exists universal ring L_{A}, such that $A-f g l(k) \cong \operatorname{Ring}\left(L_{A}, k\right)$.

Equivariant formal group laws

Non-equivariantly, $k[[y]] \rightarrow k[[y \otimes 1,1 \otimes y]]$.
For finite abelian group A : (Cole, Greenlees, Kriz, 00),

- A commutative topological Hopf k-algebra (R, Δ), complete at ideal I,
- A map $\theta: R \rightarrow k^{A^{*}}\left(A^{*}=\operatorname{Hom}\left(A, S^{1}\right)\right)$ of Hopf k-algebras, and $I=\operatorname{ker}(\theta)$,
- A reqular element $y(\epsilon) \in R$ that generates $k e r\left(\theta_{c}\right)$, and $R / \operatorname{ker}\left(\theta_{\epsilon}\right) \cong k$.

There exists universal ring L_{A}, such that $\mathrm{A}-\mathrm{fgl}(k) \cong \operatorname{Ring}\left(L_{A}, k\right)$.

Equivariant formal group laws

Non-equivariantly, $k[[y]] \rightarrow k[[y \otimes 1,1 \otimes y]]$.
For finite abelian group A : (Cole, Greenlees, Kriz, 00),

- A commutative topological Hopf k-algebra (R, Δ), complete at ideal I,
- A map $\theta: R \rightarrow k^{A^{*}}\left(A^{*}=\operatorname{Hom}\left(A, S^{1}\right)\right.$) of Hopf k-algebras, and $I=\operatorname{ker}(\theta)$,
- A regular element $y(\epsilon) \in R$ that generates $\operatorname{ker}\left(\theta_{\epsilon}\right)$, and $R / \operatorname{ker}\left(\theta_{\epsilon}\right) \cong k$.

There exists universal ring L_{A}, such that $A-f g l(k) \cong \operatorname{Ring}\left(L_{A}, k\right)$.

Equivariant formal group laws

Non-equivariantly, $k[[y]] \rightarrow k[[y \otimes 1,1 \otimes y]]$.
For finite abelian group A : (Cole, Greenlees, Kriz, 00),

- A commutative topological Hopf k-algebra (R, Δ), complete at ideal I,
- A map $\theta: R \rightarrow k^{A^{*}}\left(A^{*}=\operatorname{Hom}\left(A, S^{1}\right)\right)$ of Hopf k-algebras, and $I=\operatorname{ker}(\theta)$,
- A regular element $y(\epsilon) \in R$ that generates $\operatorname{ker}\left(\theta_{\epsilon}\right)$, and $R / \operatorname{ker}\left(\theta_{\epsilon}\right) \cong k$.
There exists universal ring L_{A}, such that $A-f g \mid(k) \cong \operatorname{Ring}\left(L_{A}, k\right)$.

Equivariant formal group laws

Non-equivariantly, $k[[y]] \rightarrow k[[y \otimes 1,1 \otimes y]]$.
For finite abelian group A : (Cole, Greenlees, Kriz, 00),

- A commutative topological Hopf k-algebra (R, Δ), complete at ideal I,
- A map $\theta: R \rightarrow k^{A^{*}}\left(A^{*}=\operatorname{Hom}\left(A, S^{1}\right)\right)$ of Hopf k-algebras, and $I=\operatorname{ker}(\theta)$,
- A regular element $y(\epsilon) \in R$ that generates $\operatorname{ker}\left(\theta_{\epsilon}\right)$, and $R / \operatorname{ker}\left(\theta_{\epsilon}\right) \cong k$.
There exists universal ring L_{A}, such that $\mathrm{A}-\mathrm{fgl}(k) \cong \operatorname{Ring}\left(L_{A}, k\right)$.

Complex oriented equivariant cohomology theories

An orientation class $x \in E_{A}^{*}(\mathbb{C} P(\mathcal{U}), p t)$.
Theorem (Cole, 96)
Given a complete flag $V^{0} \subset V^{1} \subset \ldots$ as a filtration of \mathcal{U} :

$$
E_{A}^{*}(\mathbb{C} P(U))=E_{A}^{*}\left\{\left\{y\left(V^{0}\right)=1, y\left(V^{1}\right), y\left(V^{2}\right), \ldots\right\}\right\}
$$

A complex oriented cohomology theory E_{A}^{*} gives rise to an A-equivariant formal group law:

- $k=E_{A}^{*}, R=E_{A}^{*}(\mathbb{C} P(\mathcal{U}))$,
- Δ is induced by $\mathbb{C} P(\mathcal{U}) \times \mathbb{C} P(\mathcal{U}) \rightarrow \mathbb{C} P(\mathcal{U})$,

Complex oriented equivariant cohomology theories

An orientation class $x \in E_{A}^{*}(\mathbb{C P}(\mathcal{U}), p t)$.
Theorem (Cole, 96)
Given a complete flag $V^{0} \subset V^{1} \subset \ldots$ as a filtration of \mathcal{U} :

$$
E_{A}^{*}(\mathbb{C} P(\mathcal{U}))=E_{A}^{*}\left\{\left\{y\left(V^{0}\right)=1, y\left(V^{1}\right), y\left(V^{2}\right), \ldots\right\}\right\} .
$$

A complex oriented cohomology theory E_{A}^{*} gives rise to an A-equivariant formal group law:

- $k=E_{A}^{*}, R=E_{A}^{*}(\mathbb{C P}(\mathcal{U}))$,
- Δ is induced by $\mathbb{C} P(\mathcal{U}) \times \mathbb{C} P(\mathcal{U}) \rightarrow \mathbb{C} P(\mathcal{U})$,

Complex oriented equivariant cohomology theories

An orientation class $x \in E_{A}^{*}(\mathbb{C P}(\mathcal{U}), p t)$.
Theorem (Cole, 96)
Given a complete flag $V^{0} \subset V^{1} \subset \ldots$ as a filtration of \mathcal{U} :

$$
E_{A}^{*}(\mathbb{C} P(\mathcal{U}))=E_{A}^{*}\left\{\left\{y\left(V^{0}\right)=1, y\left(V^{1}\right), y\left(V^{2}\right), \ldots\right\}\right\} .
$$

A complex oriented cohomology theory E_{A}^{*} gives rise to an A-equivariant formal group law:

- $k=E_{A}^{*}, R=E_{A}^{*}(\mathbb{C} P(\mathcal{U}))$,
- Δ is induced by $\mathbb{C P}(\mathcal{U}) \times \mathbb{C} P(\mathcal{U}) \rightarrow \mathbb{C} P(\mathcal{U})$,
- ...

Equivariant Quillen's Theorem

Theorem (Quillen, 69)
The canonical map $L \rightarrow M U^{*}$ is an isomorphism.
Theorem (Greenlees, 01)
The canonical map $\lambda_{A}: L_{A} \rightarrow M U_{A}^{*}$, is surjective, and its kernel is Euler torsion and infinitely Euler divisible.

Theorem (Hanke, Wiemeler, 17)
λ_{A} is an isomorphism for $A=C_{2}$.

Equivariant Quillen's Theorem

Theorem (Quillen, 69)
The canonical map $L \rightarrow M U^{*}$ is an isomorphism.
Theorem (Greenlees, 01)
The canonical map $\lambda_{A}: L_{A} \rightarrow M U_{A}^{*}$, is surjective, and its kernel is Euler torsion and infinitely Euler divisible.

Theorem (Hanke, Wiemeler, 17)
λ_{A} is an isomorphism for $A=C_{2}$.

Equivariant Quillen's Theorem

Theorem (Quillen, 69)
The canonical map $L \rightarrow M U^{*}$ is an isomorphism.
Theorem (Greenlees, 01)
The canonical map $\lambda_{A}: L_{A} \rightarrow M U_{A}^{*}$, is surjective, and its kernel is Euler torsion and infinitely Euler divisible.

Theorem (Hanke, Wiemeler, 17)
λ_{A} is an isomorphism for $A=C_{2}$.

Thank you for listening!

