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Complex cobordism

Complex manifolds: Compact smooth manifolds, with a tangential
stable almost complex structure.

Two closed manifolds are cobordant, if their disjoint union is the
boundary of a third manifold.

This is an equivalent relation.

Complex cobordism ring ΩU
∗ (graded), under disjoint union and

Cartesian product.
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Thom’s Theorem

Thom space Th(ξ).
Universal n-complex bundle γn.
Thom’s homomorphism: τ : πk+2nTh(γn)→ ΩU

k .

Theorem (Thom, 54)
τ is an isomorphism for large n.

Those Thom spaces could be assembled to form a spectrum called
MU, and ΩU

∗
∼= π∗MU.

Theorem (Milnor, Novikov, 60)
MU∗ = π∗MU = Z[x1, x2, ...] where xi ∈ π2iMU.
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Homotopical equivariant complex cobordism MUG

Compact Lie group G.

Complete universe U .

BU(n): G-space of n-dimensional complex subspaces of U .

Universal n-complex G-vector bundle γn
G.

Complex finite dimensional representation V : G-vector bundle
over a point.
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Homotopical equivariant complex cobordism MUG

Construction (tom Dieck, 70)
For V ⊂W , there are classifying map (W − V )× γ|V |G → γ

|W |
G .

We have

Th((W − V )× γ|V |G ) ∼= ΣW−V Th(γ
|V |
G )→ Th(γ

|W |
G ).

Let DV = Th(γ
|V |
G ) with the structured maps described above, then

spectrify to obtain MUG.

MUG is a genuine multiplicative G-specturm. It is complex stable:

MU∗G(X ) ∼= MU∗+2|V |
G (SV ∧ X ).
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Geometric equivariant complex cobordism

Tangential stable almost complex structure for a smooth
G-manifold M: equivariant isomorphism to a G-complex vector
bundle ξ over M:

TM × Rk ∼= ξ.

Geometric equivariant complex cobordism ring ΩG
∗ .

However,
ΩG
∗ � π∗MUG.

The Euler class eV ∈ π−2|V |MUG of V is

S0 → SV → Th(γ
|V |
G ).

Fact: eV 6= 0 if V G = 0.
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Pontryagin-Thom construction

Take a cobordant class [M].
Equivariant Whiteny’s embedding: M ↪→ V .
The normal bundle ν embeds as a tubular neighborhood.

Pontryagin-Thom constuction gives a composite map

SV → Th(ν)→ Th(γ
|ν|
G ),

which induces a homomorphism ΩG
∗ → π∗MUG.

The opposite of Thom’s homomorphism does not exist, due to
transversality issues.
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History

We expect MUG to play the same key role as MU plays in
non-equivariant homotopy theory. MU is the universal complex
oriented cohomology theory, and its coefficient ring MU∗ admits a
universal formal group law.

G = Z/p: Greenlees, May, Kosniowski, Kriz, Strickland, ...
G = S1,T : Sinha.
G finite abelian: Abram, Kriz.
G = Σ3: Hu, Kriz, L.
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History

Theorem (Comezaña, 96)
If G is abelian, then π∗MUG is a free MU∗-module concentrated in even
degrees.

In 1997, Greenlees and May proved a localization and completion
theorem for MUG-module spectra.

Theorem. For G abelian, (MU∗G)∧J
∼= MU∗(BG), here J is the kernel of

the augmentation map (MUG)∗ → MU∗.

The augmentation ideal J contains all Euler classes eV .
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Tate diagram

Consider cofiber sequence of Z/p-spaces

EZ/p+ → S0 → ẼZ/p.

The Tate diagram for MUZ/p :

EZ/p+ ∧ MU

∼

��

// MU

��

// ẼZ/p ∧ MU

��

EZ/p+ ∧ F (EZ/p+,MU) // F (EZ/p+,MU) // ẼZ/p ∧ F (EZ/p+,MU)

10 / 24



A closer look

Take fixed points (−)Z/p:

(MUZ/p)Z/p

��

// ΦZ/pMUZ/p

��
(F (EZ/p+,MUZ/p))Z/p // (t(MUZ/p))Z/p

Tom Dieck computes the geometric fixed point ΦZ/pMUZ/p.
The coefficient of the bottom left is MU∗(BZ/p).

Let F be the universal fgl, MU∗(BZ/p) = MU∗[[u]]/([p]F u).

The bottom map is localization at u (Greenlees, May).
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A pullback square

Theorem (Kriz, 99)
There is a pullback square of rings:

(MUZ/p)∗

��

// MU∗[bk
i , (b

k
0)−1 | i ≥ 0, k ∈ (Z/p)×]

φ
��

MU∗[[u]]/([p]F u) // MU∗[[u]]/([p]F u)[u−1]

Here |bk
i | = 2i − 2, and φ sends bk

i to the coefficient of x i in
x +F [k ]F u. In particular, φ(bk

0) = [k ]F u.

12 / 24



Generators and relations

Strickland first gives an explicit structure for MU∗Z/2.

Theorem (Strickland, 01) Let the universal formal group law be
F (x , y) =

∑
ai,jx iy j .

MU∗Z/2 is generated over MU∗ by elements u,bi,j ,qi for i , j ≥ 0 subject
to the following relations:

b0,0 = u,b0,1 = 1,b0,≥2 = 0,
bi,j − ai,j = ubi,j+1,
q0 = 0,qi − bi,0 = uqi+1.

i.e., MU∗Z/2 = MU∗[u,bi,j ,qi | i , j ≥ 0]/ ∼ .
The method is to combine the pullback square with localization and
completion theorems.
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Generalization

This method generalizes Strickland’s result to other Z/p, even to
Z/(pn).

Theorem. MU∗Z/p is generated over MU∗ by elements
u,bk

i,j , (b
k
0,1)−1,qi for i ≥ 0, j ≥ 1, k ∈ (Z/p)× with relations

b1
0,1 = 1,b1

0,≥2 = 0,

bk
i,j − ak

i,j = ubk
i,j+1,

q0 = 0,qi − ci = uqi+1.

Here ak
i,j is the coefficient of x iuj in x +F [k ]u, and ci is the coefficient

of ui in [p]u.
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Main result - notations

G = Σ3,

α is the sign representation of Σ3,
γ is the standard representation of Σ3.

Tate diagram for families, which gives us building blocks:

MUΣ3

��

// S∞α ∧MUΣ3

��
F (S(∞α)+,MUΣ3) // S∞α ∧ F (S(∞α)+,MUΣ3)
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Main result

Theorem (Hu, Kriz, L.) The ring (MUΣ3)∗ is the limit of the diagram of
rings:

R

��
((MUZ/3)∗)

Z/2

res
��

// MU∗[(uγ)±1,bγ2i ]/2

(MUZ/2)∗
res // MU∗

16 / 24



Outline of computation

Calculate MU∗BΣ3 = MU∗[[uα,uγ ]]/([2]uα, {3}uγ),

Calculate (S∞α ∧MUΣ3)∗ in the pullback diagram for F [Σ3],

S∞α ∧MUΣ3

��

// ẼF [Σ3] ∧MUΣ3

��

S∞α ∧ F (S(∞γ)+,MUΣ3) // ẼF [Σ3] ∧ F (S(∞γ)+,MUΣ3)

(S∞α ∧MUΣ3)∗ is product of (ΦΣ3MUΣ3)∗ and (ΦZ/2MUZ/2)∗.
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Outline of computation (continued)

Calculate (F (S(∞α)+,MUΣ3)∗, it is the limit of the diagram of rings
(glueing pullback diagrams):

MU∗[(uγ)±1,bγ2i ][[uα]]/[2]uα

uα 7→0
��

((MUZ/3)∗)
Z/2

res
��

// MU∗[(uγ)±1,bγ2i ]/2

MU∗BZ/2 // MU∗
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Outline of computation (continued)

MUΣ3

��

// S∞α ∧MUΣ3

��
F (S(∞α)+,MUΣ3) // S∞α ∧ F (S(∞α)+,MUΣ3)

The bottom map is inversion of uα.
Put it altogether, R is the pullback of the following diagram:

(ΦΣ3MUΣ3)∗

��
MU∗[(uγ)±1,bγ2i ][[uα]]/[2]uα // u−1

α MU∗[(uγ)±1,bγ2i ][[uα]]/[2]uα
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Main result
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Equivariant formal group laws

Non-equivariantly, k [[y ]]→ k [[y ⊗ 1,1⊗ y ]].

For finite abelian group A: (Cole, Greenlees, Kriz, 00),

A commutative topological Hopf k -algebra (R,∆), complete at
ideal I,

A map θ : R → kA∗
(A∗ = Hom(A,S1)) of Hopf k -algebras, and

I = ker(θ),

A regular element y(ε) ∈ R that generates ker(θε), and
R/ker(θε) ∼= k .

There exists universal ring LA, such that A-fgl(k )∼= Ring(LA, k ).
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Complex oriented equivariant cohomology theories

An orientation class x ∈ E∗A(CP(U),pt).

Theorem (Cole, 96)
Given a complete flag V 0 ⊂ V 1 ⊂ ... as a filtration of U :

E∗A(CP(U)) = E∗A{{y(V 0) = 1, y(V 1), y(V 2), ...}}.

A complex oriented cohomology theory E∗A gives rise to an
A-equivariant formal group law:

k = E∗A,R = E∗A(CP(U)),

∆ is induced by CP(U)× CP(U)→ CP(U),

...
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Equivariant Quillen’s Theorem

Theorem (Quillen, 69)
The canonical map L→ MU∗ is an isomorphism.

Theorem (Greenlees, 01)
The canonical map λA : LA → MU∗A, is surjective, and its kernel is Euler
torsion and infinitely Euler divisible.

Theorem (Hanke, Wiemeler, 17)
λA is an isomorphism for A = C2.
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Thank you for listening!
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