Converse of Smith Theory

Min Yan Hong Kong University of Science and Technology

International Workshop on Algebraic Topology SCMS, Shanghai, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Joint with S. Cappell and S. Weinberger

- Smith Theory and Pseudo-equivalence
- General Action: Oliver
- Semi-Free Action: Jones

Always assume: Finite CW-complex, Finite group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Paul Althaus Smith Fixed-Point Theorems for Periodic Transformations. *Amer. J. Math.*, 63(1):1-8, 1941.

THEOREM I(α). Let p be a prime and M a finite dimensional locally bicompact space which is acyclic mod p. Every homeomorphic transformation of period p^{α} ($\alpha > 0$) of M into itself admits at least one fixed point.

THEOREM II. The totality L of fixed points which theorem I(1) asserts to be non-empty, is acyclic modulo p.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Paul Althaus Smith Fixed-Point Theorems for Periodic Transformations. *Amer. J. Math.*, 63(1):1-8, 1941.

THEOREM I(α). Let p be a prime and M a finite dimensional locally bicompact space which is acyclic mod p. Every homeomorphic transformation of period p^{α} ($\alpha > 0$) of M into itself admits at least one fixed point.

THEOREM II. The totality L of fixed points which theorem I(1) asserts to be non-empty, is acyclic modulo p.

Theorem

 $G = \mathbb{Z}_{p^k}$ acts on \mathbb{F}_p -acyclic $X \implies X^G$ is \mathbb{F}_p -acyclic.

$$\widetilde{H}_*(X; \mathbb{F}_p) = 0 \implies \widetilde{H}_*(X^G; \mathbb{F}_p) = 0.$$

"X is
$$\mathbb{F}_p$$
-acyclic $\implies X^G$ is \mathbb{F}_p -acyclic" holds for
1. Smith: $G = \mathbb{Z}_{p^k}$.

"X is
$$\mathbb{F}_p$$
-acyclic $\implies X^G$ is \mathbb{F}_p -acyclic" holds for

1. Smith:
$$G = \mathbb{Z}_{p^k}$$
.

2. *G* is *p*-group.

- "X is \mathbb{F}_p -acyclic $\implies X^G$ is \mathbb{F}_p -acyclic" holds for
 - 1. Smith: $G = \mathbb{Z}_{p^k}$.
 - 2. G is p-group.
 - 3. Any G, semi-free action ($G_x = G$ or e), and p dividing |G|.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- "X is \mathbb{F}_p -acyclic $\implies X^G$ is \mathbb{F}_p -acyclic" holds for
 - 1. Smith: $G = \mathbb{Z}_{p^k}$.
 - 2. *G* is *p*-group.
 - 3. Any G, semi-free action ($G_x = G$ or e), and p dividing |G|.

Need to divide into two cases:

- Semi-free action: Smith condition must be satisfied.
- General action, |G| is not prime power: Smith condition needs not be satisfied.

The first was studied by Lowell Jones. The second was studied by Robert Oliver.

1. Converse of Smith

Theorem [Lowell Jones 1971] *F* is \mathbb{Z}_n -acyclic $\implies F = X^{\mathbb{Z}_n}$ for a contractible *X* with semi-free \mathbb{Z}_n -action. **Remark** \mathbb{Z}_n -acyclic $\iff \mathbb{Z}_p$ -acyclic for all p|n.

Theorem [Robert Oliver 1975] For any *G* such that |G| is not prime power, there is n_G , such that $F = X^G$ for a contractible *X* with *G*-action $\iff \chi(F) = 1 \mod n_G$.

Definition A *G*-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the *G*-action.

Definition A *G*-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the *G*-action.

$$F \xrightarrow{f} Y$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition A *G*-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the *G*-action.

Definition A *G*-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the *G*-action.

Pseudo-equivalence Extension Problem

Always assume: $F = X^G$ (*F* has trivial *G*-action), and adding free *G*-cells (semi-free), or adding non-fixed *G*-cells (general).

Definition A *G*-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the *G*-action.

Pseudo-equivalence Extension Problem

Always assume: $F = X^G$ (*F* has trivial *G*-action), and adding free *G*-cells (semi-free), or adding non-fixed *G*-cells (general).

Jones and Oliver: The case Y is a single point. Our problem: Y not contractible, especially $\pi = \pi_1 Y$ non-trivial.

Oliver and Petrie (1982) studied the general problem, with isotropies of X - F in a prescribed family. However, they only conclude quasi-equivalence instead of pseudo-equivalence.

Oliver and Petrie (1982) studied the general problem, with isotropies of X - F in a prescribed family. However, they only conclude quasi-equivalence instead of pseudo-equivalence.

Quasi-equivalence: $\pi_1 X \cong \pi_1 Y$ and $H_*(X; \mathbb{Z}) \cong H_*(Y; \mathbb{Z})$

Pseudo-equivalence: $\pi_1 X \cong \pi_1 Y$ and $H_*(X; \mathbb{Z}\pi) \cong H_*(Y; \mathbb{Z}\pi)$

Oliver and Petrie (1982) studied the general problem, with isotropies of X - F in a prescribed family. However, they only conclude quasi-equivalence instead of pseudo-equivalence.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

2. General Action: Pseudo-equivalence Invariant

|G| is not prime power

 \implies There is n_G , $\chi(X^G) = 1 \mod n_G$ for contractible G-space X.

- \implies For pseudo-equiv $g: X \rightarrow Y$, $\chi(X^{\mathcal{G}}) = \chi(Y^{\mathcal{G}}) \mod n_{\mathcal{G}}$.
- $\implies \chi(X^G) \mod n_G$ is pseudo-equivalence invariant.

Second \implies : Apply Oliver to contractible *G*-space Cone(*g*).

2. General Action: Pseudo-equivalence Invariant

|G| is not prime power

- \implies There is n_G , $\chi(X^G) = 1 \mod n_G$ for contractible G-space X.
- \implies For pseudo-equiv $g: X \rightarrow Y$, $\chi(X^G) = \chi(Y^G) \mod n_G$.
- $\implies \chi(X^G) \mod n_G$ is pseudo-equivalence invariant.

Second \implies : Apply Oliver to contractible *G*-space Cone(*g*).

Remark Pseudo-equivalence has no inverse. To get equivalence relation, need zig-zaging sequence of pseudo-equivalences

$$X \leftarrow \bullet \rightarrow \bullet \leftarrow \bullet \rightarrow \bullet \cdots \bullet \leftarrow \bullet \rightarrow Y$$

 $\chi(X^G) \mod n_G$ is an invariant in this sense.

2. General Action: Main Theorem

Theorem

Suppose |G| is not prime power, and $Y_1^G, Y_2^G, \ldots, Y_k^G$ are components of Y^G . Then there is a subgroup $N_Y \subset \mathbb{Z}^k$, such that $f: F \to Y$ can be extended to a pseudo-equivalence *G*-map $g: X \to Y$, with $X^G = F$, if and only if

$$(\chi(F_1)-\chi(Y_1^G), \ldots, \chi(F_k)-\chi(Y_k^G)) \in N_Y, \quad F_i=f^{-1}(Y_i^G).$$

Moreover,

$$n_G \mathbb{Z}^k \subset N_Y \subset \{(a_i): n_G \text{ divides } \sum a_i\}.$$

2. General Action: Main Theorem

Theorem

Suppose |G| is not prime power, and $Y_1^G, Y_2^G, \ldots, Y_k^G$ are components of Y^G . Then there is a subgroup $N_Y \subset \mathbb{Z}^k$, such that $f: F \to Y$ can be extended to a pseudo-equivalence *G*-map $g: X \to Y$, with $X^G = F$, if and only if

$$(\chi(F_1)-\chi(Y_1^G), \ldots, \chi(F_k)-\chi(Y_k^G)) \in N_Y, \quad F_i=f^{-1}(Y_i^G).$$

Moreover,

$$n_G \mathbb{Z}^k \subset N_Y \subset \{(a_i): n_G \text{ divides } \sum a_i\}.$$

First \subset : component-wise $\chi(F_i) = \chi(Y_i^G) \mod n_G$ is sufficient. Second \subset : global $\chi(F) = \chi(Y^G) \mod n_G$ is necessary.

2. General Action: Connected Y^G

$$N_Y = n_G \mathbb{Z}$$
 for $k = 1$, i.e., Y^G is connected.

Theorem

Suppose |G| is not prime power, and Y^G is connected. Then $f: F \to Y$ can be extended to a pseudo-equivalence *G*-map $g: X \to Y$, with $X^G = F$, if and only if $\chi(F) = \chi(Y^G) \mod n_G$.

2. General Action: Connected Y^G

$$N_Y = n_G \mathbb{Z}$$
 for $k = 1$, i.e., Y^G is connected.

Theorem

Suppose |G| is not prime power, and Y^G is connected. Then $f: F \to Y$ can be extended to a pseudo-equivalence *G*-map $g: X \to Y$, with $X^G = F$, if and only if $\chi(F) = \chi(Y^G) \mod n_G$.

Corollary

Suppose |G| is not prime power, and Y^G is non-empty and connected. Then $F = X^G$ for some X pseudo-equivalent to Y (no direct map needed) if and only if $\chi(F) = \chi(Y^G) \mod n_G$.

(日) (同) (三) (三) (三) (○) (○)

Corollary

If |G| is not prime power, Y is connected, $\chi(Y) = 0 \mod n_G$, then G acts on a homotopy Y with no fixed points.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

If |G| is not prime power, Y is connected, $\chi(Y) = 0 \mod n_G$, then G acts on a homotopy Y with no fixed points.

G-action on X, induces homomorphism $G \to \text{Out}(\pi)$, $\pi = \pi_1 X$. If the action has fixed point, then the homomorphism lifts to $G \to \text{Aut}(\pi)$.

Corollary

If |G| is not prime power, Y is connected, $\chi(Y) = 0 \mod n_G$, then G acts on a homotopy Y with no fixed points.

G-action on *X*, induces homomorphism $G \to \text{Out}(\pi)$, $\pi = \pi_1 X$. If the action has fixed point, then the homomorphism lifts to $G \to \text{Aut}(\pi)$.

Problem: If $G \to Out(\pi)$ lifts to $Aut(\pi)$, does the action have fixed point?

Corollary

If |G| is not prime power, Y is connected, $\chi(Y) = 0 \mod n_G$, then G acts on a homotopy Y with no fixed points.

G-action on *X*, induces homomorphism $G \to \text{Out}(\pi)$, $\pi = \pi_1 X$. If the action has fixed point, then the homomorphism lifts to $G \to \text{Aut}(\pi)$.

Problem: If $G \to Out(\pi)$ lifts to $Aut(\pi)$, does the action have fixed point?

The corollary provides plenty of examples of G-action on homotopy Y with and without fixed points.

Corollary

If |G| is not prime power, Y is connected, $\chi(Y) = 0 \mod n_G$, then G acts on a homotopy Y with no fixed points.

G-action on *X*, induces homomorphism $G \to \text{Out}(\pi)$, $\pi = \pi_1 X$. If the action has fixed point, then the homomorphism lifts to $G \to \text{Aut}(\pi)$.

Problem: If $G \to Out(\pi)$ lifts to $Aut(\pi)$, does the action have fixed point?

The corollary provides plenty of examples of G-action on homotopy Y with and without fixed points.

Theorem

Suppose |G| is not prime power. Then there is an aspherical manifold M with centerless fundamental group, such that $G \rightarrow \text{Out}(\pi)$ lifts to $\text{Aut}(\pi)$, and the action has no fixed point.

Need to show

- 1. $N_Y = \{(\chi(X_i^G) \chi(Y_i^G))_{i=1}^k$: pseudo-equiv $X \to Y\}$ is an abelian subgroup.
- 2. Component-wise Euler condition $\chi(F_i) = \chi(Y_i^G) \mod n_G$ \implies pseudo-equivalence extension exists.

Need to show

- 1. $N_Y = \{(\chi(X_i^G) \chi(Y_i^G))_{i=1}^k$: pseudo-equiv $X \to Y\}$ is an abelian subgroup.
- 2. Component-wise Euler condition $\chi(F_i) = \chi(Y_i^G) \mod n_G$ \implies pseudo-equivalence extension exists.

The first is by general constructions, which also shows that N_Y is functorial. The second is by the following steps:

Need to show

- 1. $N_Y = \{(\chi(X_i^G) \chi(Y_i^G))_{i=1}^k$: pseudo-equiv $X \to Y\}$ is an abelian subgroup.
- 2. Component-wise Euler condition $\chi(F_i) = \chi(Y_i^G) \mod n_G$ \implies pseudo-equivalence extension exists.

The first is by general constructions, which also shows that N_Y is functorial. The second is by the following steps:

► Reduce to extending f: F → Y, Y connected and trivial action.

Need to show

- 1. $N_Y = \{(\chi(X_i^G) \chi(Y_i^G))_{i=1}^k$: pseudo-equiv $X \to Y\}$ is an abelian subgroup.
- 2. Component-wise Euler condition $\chi(F_i) = \chi(Y_i^G) \mod n_G$ \implies pseudo-equivalence extension exists.

The first is by general constructions, which also shows that N_Y is functorial. The second is by the following steps:

- ► Reduce to extending f: F → Y, Y connected and trivial action.
- Partition of Euler number: If F ≠ Ø and χ(F) = χ(Y) mod n, then by changing F and f by homotopy, we have χ(f⁻¹(σ)) = 1 mod n for each cell σ of Y.

Need to show

- 1. $N_Y = \{(\chi(X_i^G) \chi(Y_i^G))_{i=1}^k$: pseudo-equiv $X \to Y\}$ is an abelian subgroup.
- 2. Component-wise Euler condition $\chi(F_i) = \chi(Y_i^G) \mod n_G$ \implies pseudo-equivalence extension exists.

The first is by general constructions, which also shows that N_Y is functorial. The second is by the following steps:

- ► Reduce to extending f: F → Y, Y connected and trivial action.
- Partition of Euler number: If F ≠ Ø and χ(F) = χ(Y) mod n, then by changing F and f by homotopy, we have χ(f⁻¹(σ)) = 1 mod n for each cell σ of Y.
- Oliver's argument is relative, allowing induction on cells.

Need to show

- 1. $N_Y = \{(\chi(X_i^G) \chi(Y_i^G))_{i=1}^k$: pseudo-equiv $X \to Y\}$ is an abelian subgroup.
- 2. Component-wise Euler condition $\chi(F_i) = \chi(Y_i^G) \mod n_G$ \implies pseudo-equivalence extension exists.

The first is by general constructions, which also shows that N_Y is functorial. The second is by the following steps:

- ► Reduce to extending f: F → Y, Y connected and trivial action.
- Partition of Euler number: If F ≠ Ø and χ(F) = χ(Y) mod n, then by changing F and f by homotopy, we have χ(f⁻¹(σ)) = 1 mod n for each cell σ of Y.
- Oliver's argument is relative, allowing induction on cells.
- Treat $F = \emptyset$ by the special case $Y = S^1$.

Corollary If |G| is not prime power, then there is a *G*-space $X \simeq S^1$, such that $X^G = \emptyset$.

Corollary If |G| is not prime power, then there is a *G*-space $X \simeq S^1$, such that $X^G = \emptyset$.

Let $V = \ker(\mathbb{R}G \to \mathbb{R}) \subset \mathbb{R}G$, and $Z = \text{unit sphere of } \oplus^k V$.

Corollary If |G| is not prime power, then there is a *G*-space $X \simeq S^1$, such that $X^G = \emptyset$.

Let $V = \ker(\mathbb{R}G \to \mathbb{R}) \subset \mathbb{R}G$, and $Z = \text{unit sphere of } \oplus^k V$.

Corollary If |G| is not prime power, then there is a *G*-space $X \simeq S^1$, such that $X^G = \emptyset$.

Let $V = \ker(\mathbb{R}G \to \mathbb{R}) \subset \mathbb{R}G$, and $Z = \text{unit sphere of } \oplus^k V$.

Corollary If |G| is not prime power, then there is a *G*-space $X \simeq S^1$, such that $X^G = \emptyset$.

Let $V = \ker(\mathbb{R}G \to \mathbb{R}) \subset \mathbb{R}G$, and $Z = \text{unit sphere of } \oplus^k V$.

Corollary If |G| is not prime power, then there is a *G*-space $X \simeq S^1$, such that $X^G = \emptyset$.

Let $V = \ker(\mathbb{R}G \to \mathbb{R}) \subset \mathbb{R}G$, and $Z = \text{unit sphere of } \oplus^k V$.

We have $D/\partial D \cong_P Z$ and *G*-map of degree $1 \pm |G/N_P|$

 $Z \to Z \vee_{G_X} G(D/\partial D) \to Z.$

Corollary If |G| is not prime power, then there is a *G*-space $X \simeq S^1$, such that $X^G = \emptyset$.

Let $V = \ker(\mathbb{R}G \to \mathbb{R}) \subset \mathbb{R}G$, and $Z = \text{unit sphere of } \oplus^k V$.

We have $D/\partial D \cong_P Z$ and *G*-map of degree $1 \pm |G/N_P|$

$$Z \to Z \vee_{G_X} G(D/\partial D) \to Z.$$

Repeat and modify for all P_i , get G-map $\phi: Z \to Z$ of degree

$$1 + a_1 |G/N_{P_1}| + \cdots + a_n |G/N_{P_n}| = 0.$$

Corollary If |G| is not prime power, then there is a *G*-space $X \simeq S^1$, such that $X^G = \emptyset$.

Let $V = \ker(\mathbb{R}G \to \mathbb{R}) \subset \mathbb{R}G$, and $Z = \text{unit sphere of } \oplus^k V$.

We have $D/\partial D \cong_P Z$ and *G*-map of degree $1 \pm |G/N_P|$

$$Z \to Z \vee_{G_X} G(D/\partial D) \to Z.$$

Repeat and modify for all P_i , get G-map $\phi: Z \to Z$ of degree

$$1 + a_1 |G/N_{P_1}| + \cdots + a_n |G/N_{P_n}| = 0.$$

Mapping torus $X = T(\phi) \rightarrow S^1$ is \simeq .

 $n_G \mathbb{Z}^k \subset N_Y \subset \{(a_i) \in \mathbb{Z}^k : n_G \text{ divides } \sum a_i\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $n_G \mathbb{Z}^k \subset N_Y \subset \{(a_i) \in \mathbb{Z}^k : n_G \text{ divides } \sum a_i\}.$

 $N_Y = \mathbb{Z}^k$ (no Euler condition) if $n_G = 1$. By Oliver (1975), this means G is not of the form

 $P \lhd H \lhd G$, |P| and |G/H| prime power, and H/P cyclic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $n_G \mathbb{Z}^k \subset N_Y \subset \{(a_i) \in \mathbb{Z}^k : n_G \text{ divides } \sum a_i\}.$

 $N_Y = \mathbb{Z}^k$ (no Euler condition) if $n_G = 1$. By Oliver (1975), this means G is not of the form

 $P \lhd H \lhd G$, |P| and |G/H| prime power, and H/P cyclic.

Theorem

Suppose $n_G = 0$, which means

 $P \lhd G$, |P| prime power, and G/P cyclic.

Let Γ on \tilde{Y} be the lifting of G on Y. If the connected components Y_1^G, \ldots, Y_k^G of Y^G satisfy

1. Induced splittings $G \xrightarrow{s_i} \Gamma$ are not π -conjugate.

2.
$$\pi_1 Y_i^{\mathcal{G}} \to \pi_1 Y$$
 are injective.

Then $N_Y = n_G \mathbb{Z}^k$.

Theorem [Oliver and Petrie 1982]

Consider $G = D_p$, the dihedral group of order 2p (p an odd prime). Consider $f : F \to Y$, Y simply connected.

Let $Y_1^{C_p}, \ldots, Y_l^{C_p}$ be connected components of Y^{C_p} . Then f has pseudo-equivalence extension if and only if

$$\chi(F \cap f^{-1}(Y_i^{\mathcal{C}_p})) = \chi(Y^G \cap Y_i^{\mathcal{C}_p}) \text{ for all } i.$$

3. Semi-free Action: Pseudo-equivalence Invariant

For semi-free action, pseudo-equivalence $g: X \to Y$ implies Smith condition

$$H_*(X^G; \mathbb{F}_p \pi) \cong H_*(Y^G; \mathbb{F}_p \pi), \quad p \mid |G|.$$

So $H_*(-^G; \mathbb{F}_p\pi)$ is pseudo-equivalence invariant, not as easy to use as Euler number.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. Semi-free Action: Main Theorem

Theorem (fixed target)

A map $f: F \to Y$ (no G-action) has pseudo-equivalent extension $g: X \to Y$, with semi-free G-space X and $F = X^G$, if and only if

- 1. Smith: $H_*(F; \mathbb{F}_p \pi) \cong H_*(Y; \mathbb{F}_p \pi)$,
- 2. K-theory: $[C(\tilde{f})] \in \tilde{K}_0(\mathbb{Z}[\pi \times G])$ vanishes.

3. Semi-free Action: Main Theorem

Theorem (fixed target)

A map $f: F \to Y$ (no G-action) has pseudo-equivalent extension $g: X \to Y$, with semi-free G-space X and $F = X^G$, if and only if

- 1. Smith: $H_*(F; \mathbb{F}_p \pi) \cong H_*(Y; \mathbb{F}_p \pi)$,
- 2. K-theory: $[C(\tilde{f})] \in \tilde{K}_0(\mathbb{Z}[\pi \times G])$ vanishes.

Remark $C(\tilde{f})$ is $\mathbb{Z}\pi$ -chain complex, regarded as $\mathbb{Z}[\pi \times G]$ -chain complex by trivial *G*-action. Then Smith condition implies $C(\tilde{f})$ has finite $\mathbb{Z}[\pi \times G]$ -projective resolution.

3. Semi-free Action: Main Theorem

Theorem (fixed target)

A map $f: F \to Y$ (no G-action) has pseudo-equivalent extension $g: X \to Y$, with semi-free G-space X and $F = X^G$, if and only if

- 1. Smith: $H_*(F; \mathbb{F}_p \pi) \cong H_*(Y; \mathbb{F}_p \pi)$,
- 2. K-theory: $[C(\tilde{f})] \in \tilde{K}_0(\mathbb{Z}[\pi \times G])$ vanishes.

Remark $C(\tilde{f})$ is $\mathbb{Z}\pi$ -chain complex, regarded as $\mathbb{Z}[\pi \times G]$ -chain complex by trivial *G*-action. Then Smith condition implies $C(\tilde{f})$ has finite $\mathbb{Z}[\pi \times G]$ -projective resolution.

Theorem (semi-free target)

Consider G acting semi-freely on Y and $f: F \to Y^G \subset Y$, exists exists if and only if Smith condition is satisfied and K-theory obstruction $[C(\tilde{f})] \in \tilde{K}_0(\mathbb{Z}[\Gamma])$ vanishes.

3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.

3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.

Attach free *G*-cells to *F* to get isomorphism on π_1 and then inductively kill $H_i(f; \mathbb{Z}\pi)$. Get $f^n: X^n \to Y$, $n > \dim F$, $\dim Y$, such that $H_i(f^n; \mathbb{Z}\pi) = 0$ for $i \leq n$. Get exact sequence

$$0 o C_*(\tilde{f}) o C_*(\tilde{f}^n) o C_{*-1}(\tilde{X}^n, \tilde{F}) o 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.

Attach free *G*-cells to *F* to get isomorphism on π_1 and then inductively kill $H_i(f; \mathbb{Z}\pi)$. Get $f^n: X^n \to Y$, $n > \dim F$, dim *Y*, such that $H_i(f^n; \mathbb{Z}\pi) = 0$ for $i \le n$. Get exact sequence

$$0 o C_*(\widetilde{f}) o C_*(\widetilde{f}^n) o C_{*-1}(\widetilde{X}^n, \widetilde{F}) o 0.$$

The obstruction is the "stable $\mathbb{Z}(\pi \times G)$ -freeness" of $H_{n+1}(f^n; \mathbb{Z}\pi)$. Since $C_*(\tilde{X}^n, \tilde{F})$ is $\mathbb{Z}(\pi \times G)$ -free, the obstruction is

$$\pm [H_{n+1}(f^n;\mathbb{Z}\pi)] = [C_*(\tilde{f}^n)] = [C_*(\tilde{f})] \in \tilde{K}_0(\mathbb{Z}[\pi \times G]).$$

 $Y = S^1$, $\pi = \{t^i : i \in \mathbb{Z}\}$. F is double mapping torus T(a, b) of maps $S^d \to S^d$ of deg a, b

 $Y = S^1$, $\pi = \{t^i : i \in \mathbb{Z}\}$. F is double mapping torus T(a, b) of maps $S^d \to S^d$ of deg a, b

For $G = \mathbb{Z}_n$, we want to extend $f : F = T(a, b) \rightarrow Y$ to semi-free pseudo-equivalence.

 $Y = S^1$, $\pi = \{t^i : i \in \mathbb{Z}\}$. F is double mapping torus T(a, b) of maps $S^d \to S^d$ of deg a, b

For $G = \mathbb{Z}_n$, we want to extend $f : F = T(a, b) \rightarrow Y$ to semi-free pseudo-equivalence.

The only non-trivial $\mathbb{Z}\pi$ -homology of f is

$$H = H_d(f; \mathbb{Z}[t, t^{-1}]) = \mathbb{Z}[t, t^{-1}]/(at - b).$$

The pullback diagrams

induce ∂ between Bass-Heller-Swan decompositions

$$\begin{split} & \mathcal{K}_{1}(\mathbb{Z}_{n}[t,t^{-1}]) = \mathcal{K}_{1}(\mathbb{Z}_{n}) \oplus \mathcal{K}_{0}(\mathbb{Z}_{n}) \oplus \mathcal{N}\mathcal{K}_{1}(\mathbb{Z}_{n}) \oplus \mathcal{N}\mathcal{K}_{1}(\mathbb{Z}_{n}) \\ & \downarrow \partial \\ & \tilde{\mathcal{K}}_{0}(\mathbb{Z}[\mathbb{Z}_{n}][t,t^{-1}]) = \tilde{\mathcal{K}}_{0}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus \mathcal{K}_{-1}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus \mathcal{N}\mathcal{K}_{0}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus \mathcal{N}\mathcal{K}_{0}(\mathbb{Z}[\mathbb{Z}_{n}]) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $G = \mathbb{Z}_n$, $n = p^k$, p prime, a = p, b = 1, we have $H = \mathbb{Z}[t, t^{-1}]/(pt - 1)$, Smith condition satisfied.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For
$$G = \mathbb{Z}_n$$
, $n = p^k$, p prime, $a = p$, $b = 1$, we have
 $H = \mathbb{Z}[t, t^{-1}]/(pt - 1)$, Smith condition satisfied.
 $[pt - 1] = ([p - 1], 0, 0, [(p - 1)^{-1}p])$ in
 $K_1(\mathbb{Z}_n[t, t^{-1}]) = K_1(\mathbb{Z}_n) \oplus K_0(\mathbb{Z}_n) \oplus NK_1(\mathbb{Z}_n) \oplus NK_1(\mathbb{Z}_n)$,
goes to $[H] = (0, 0, 0, \partial[(p - 1)^{-1}p])$ in
 $\tilde{K}_0(\mathbb{Z}[\mathbb{Z}_n][t, t^{-1}]) = \tilde{K}_0(\mathbb{Z}[\mathbb{Z}_n]) \oplus K_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \oplus NK_0(\mathbb{Z}[\mathbb{Z}_n]) \oplus NK_0(\mathbb{Z}[\mathbb{Z}_n])$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For
$$G = \mathbb{Z}_n$$
, $n = p^k$, p prime, $a = p$, $b = 1$, we have
 $H = \mathbb{Z}[t, t^{-1}]/(pt - 1)$, Smith condition satisfied.
 $[pt - 1] = ([p - 1], 0, 0, [(p - 1)^{-1}p])$ in
 $K_1(\mathbb{Z}_n[t, t^{-1}]) = K_1(\mathbb{Z}_n) \oplus K_0(\mathbb{Z}_n) \oplus NK_1(\mathbb{Z}_n) \oplus NK_1(\mathbb{Z}_n)$,
goes to $[H] = (0, 0, 0, \partial[(p - 1)^{-1}p])$ in
 $\tilde{K}_0(\mathbb{Z}[\mathbb{Z}_n][t, t^{-1}]) = \tilde{K}_0(\mathbb{Z}[\mathbb{Z}_n]) \oplus K_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \oplus NK_0(\mathbb{Z}[\mathbb{Z}_n]) \oplus NK_0(\mathbb{Z}[\mathbb{Z}_n])$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For
$$G = \mathbb{Z}_n$$
, $n = p^k$, p prime, $a = p$, $b = 1$, we have
 $H = \mathbb{Z}[t, t^{-1}]/(pt - 1)$, Smith condition satisfied.
 $[pt - 1] = ([p - 1], 0, 0, [(p - 1)^{-1}p])$ in
 $K_1(\mathbb{Z}_n[t, t^{-1}]) = K_1(\mathbb{Z}_n) \oplus K_0(\mathbb{Z}_n) \oplus NK_1(\mathbb{Z}_n) \oplus NK_1(\mathbb{Z}_n)$,
goes to $[H] = (0, 0, 0, \partial[(p - 1)^{-1}p])$ in
 \tilde{U} (EVEL 10. (EVEL 10

 $\widetilde{\mathcal{K}}_{0}(\mathbb{Z}[\mathbb{Z}_{n}][t,t^{-1}]) = \widetilde{\mathcal{K}}_{0}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus \mathcal{K}_{-1}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus \mathcal{N}\mathcal{K}_{0}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus \mathcal{N}\mathcal{K}_{0}(\mathbb{Z}[\mathbb{Z}_{n}])$

- For k = 1, [(p − 1)⁻¹p] ∈ NK₁(Z_n) already vanishes. So pseudo-equivalence extension exists.
- For k > 1, ∂[(p − 1)⁻¹p] ∈ NK₀(ℤ[ℤ_n]) is non-trivial. So pseudo-equivalence extension does not exist. (still obstruction even in ANR category).

Theorem

If G has element of order p^2 (say G is a p-group and $G \neq \mathbb{Z}_p^{\oplus k}$), then there is no semi-free G-action on homotopy S^1 with T(p, 1) as fixed point.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If $G = \mathbb{Z}_n$, *n* is not prime power, then $n = n_1 n_2$, with $n_1, n_2 > 1$ and coprime. Pick a, b = 1 - a satisfying

 $(a,b) = (1,0) \mod n_1, \quad (a,b) = (0,1) \mod n_2.$

Then $H = \mathbb{Z}[t, t^{-1}]/(at - b)$ satisfies Smith condition.

If $G = \mathbb{Z}_n$, *n* is not prime power, then $n = n_1 n_2$, with $n_1, n_2 > 1$ and coprime. Pick a, b = 1 - a satisfying

$$(a,b) = (1,0) \mod n_1, \quad (a,b) = (0,1) \mod n_2.$$

Then $H = \mathbb{Z}[t, t^{-1}]/(at - b)$ satisfies Smith condition.

$$[at - b] = (0, [a\mathbb{Z}_n], 0, 0) \text{ in (note } \mathbb{Z}_n = a\mathbb{Z}_n \oplus b\mathbb{Z}_n)$$
$$\mathcal{K}_1(\mathbb{Z}_n[t, t^{-1}]) = \mathcal{K}_1(\mathbb{Z}_n) \oplus \mathcal{K}_0(\mathbb{Z}_n) \oplus N\mathcal{K}_1(\mathbb{Z}_n) \oplus N\mathcal{K}_1(\mathbb{Z}_n),$$

goes to $[H] = (0, \partial [a\mathbb{Z}_n], 0, 0)$ in

 $\tilde{K}_{0}(\mathbb{Z}[\mathbb{Z}_{n}][t,t^{-1}]) = \tilde{K}_{0}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus K_{-1}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus NK_{0}(\mathbb{Z}[\mathbb{Z}_{n}]) \oplus NK_{0}(\mathbb{Z}[\mathbb{Z}_{n}])$

If $G = \mathbb{Z}_n$, *n* is not prime power, then $n = n_1 n_2$, with $n_1, n_2 > 1$ and coprime. Pick a, b = 1 - a satisfying

$$(a,b) = (1,0) \mod n_1, \quad (a,b) = (0,1) \mod n_2.$$

Then $H = \mathbb{Z}[t, t^{-1}]/(at - b)$ satisfies Smith condition.

$$[at - b] = (0, [a\mathbb{Z}_n], 0, 0) \text{ in (note } \mathbb{Z}_n = a\mathbb{Z}_n \oplus b\mathbb{Z}_n)$$

$$K_1(\mathbb{Z}_n[t, t^{-1}]) = K_1(\mathbb{Z}_n) \oplus K_0(\mathbb{Z}_n) \oplus NK_1(\mathbb{Z}_n) \oplus NK_1(\mathbb{Z}_n),$$
goes to $[H] = (0, \partial[a\mathbb{Z}_n], 0, 0)$ in
$$\tilde{K}_0(\mathbb{Z}[\mathbb{Z}_n][t, t^{-1}]) = \tilde{K}_0(\mathbb{Z}[\mathbb{Z}_n]) \oplus K_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \oplus NK_0(\mathbb{Z}[\mathbb{Z}_n]) \oplus NK_0(\mathbb{Z}[\mathbb{Z}_n])$$

No longer obstruction in ANR category!

Calculate $\partial [a\mathbb{Z}_n]$ by exact sequence $\tilde{K}_0(\mathbb{Z}) \oplus \tilde{K}_0(\mathbb{Z}[\xi_n]) \to \tilde{K}_0(\mathbb{Z}_n) \xrightarrow{\partial} K_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \to K_{-1}(\mathbb{Z}) \oplus K_{-1}(\mathbb{Z}[\xi_n]).$ This is $(K_0(\mathbb{Z}_n) = \oplus_{i=1}^k K_0(\mathbb{Z}_{p_i^{m_i}}) = \mathbb{Z}^k$ for $n = p_1^{m_1} \dots p_k^{m_k})$

 $0 \oplus \text{finite} \to \mathbb{Z}^k / \mathbb{Z}(1, \dots, 1) \xrightarrow{\partial} \mathcal{K}_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \to 0 \oplus \text{torsionfree}$

Calculate $\partial [a\mathbb{Z}_n]$ by exact sequence $\tilde{K}_0(\mathbb{Z}) \oplus \tilde{K}_0(\mathbb{Z}[\xi_n]) \to \tilde{K}_0(\mathbb{Z}_n) \xrightarrow{\partial} K_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \to K_{-1}(\mathbb{Z}) \oplus K_{-1}(\mathbb{Z}[\xi_n]).$ This is $(K_0(\mathbb{Z}_n) = \bigoplus_{i=1}^k K_0(\mathbb{Z}_{p_i^{m_i}}) = \mathbb{Z}^k$ for $n = p_1^{m_1} \dots p_k^{m_k})$ $0 \oplus \text{finite} \to \mathbb{Z}^k / \mathbb{Z}(1, \dots, 1) \xrightarrow{\partial} K_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \to 0 \oplus \text{torsionfree}$ ∂ is injective. In fact $\tilde{K}_0(\mathbb{Z}_n)$ is a direct summand of $K_{-1}(\mathbb{Z}[\mathbb{Z}_n]).$

Calculate $\partial [a\mathbb{Z}_n]$ by exact sequence $\tilde{K}_0(\mathbb{Z}) \oplus \tilde{K}_0(\mathbb{Z}[\xi_n]) \to \tilde{K}_0(\mathbb{Z}_n) \xrightarrow{\partial} K_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \to K_{-1}(\mathbb{Z}) \oplus K_{-1}(\mathbb{Z}[\xi_n]).$ This is $(K_0(\mathbb{Z}_n) = \bigoplus_{i=1}^k K_0(\mathbb{Z}_{p_i^{m_i}}) = \mathbb{Z}^k$ for $n = p_1^{m_1} \dots p_k^{m_k})$ $0 \oplus \text{finite} \to \mathbb{Z}^k / \mathbb{Z}(1, \dots, 1) \xrightarrow{\partial} K_{-1}(\mathbb{Z}[\mathbb{Z}_n]) \to 0 \oplus \text{torsionfree}$ ∂ is injective. In fact $\tilde{K}_0(\mathbb{Z}_n)$ is a direct summand of $K_{-1}(\mathbb{Z}[\mathbb{Z}_n]).$

Take
$$n_1 = p_1^{m_1}$$
, $n_2 = p_2^{m_2} \dots p_k^{m_k}$
 $\implies [a\mathbb{Z}_n] = [1, 0, \dots, 0] \neq 0 \in \tilde{K}_0(\mathbb{Z}_n)$
 $\implies \partial[a\mathbb{Z}_n] \neq 0 \in K_{-1}(\mathbb{Z}[\mathbb{Z}_n]).$

3. Semi-Free Action: Summary

For $G = \mathbb{Z}_n$ acting on homotopy circle:

- ► If *n* is not primer power, then we get K₋₁-obstruction counterexample.
- ▶ If p^2 divides *n*, then get NK_0 -obstruction counterexample.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank You

<□ > < @ > < E > < E > E のQ @