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1. Smith Theory

Paul Althaus Smith
Fixed-Point Theorems for Periodic Transformations.
Amer. J. Math., 63(1):1-8, 1941.

Theorem
G = Zpk acts on Fp-acyclic X =⇒ XG is Fp-acyclic.

H̃∗(X ;Fp) = 0 =⇒ H̃∗(XG ;Fp) = 0.
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1. Smith Theory

“X is Fp-acyclic =⇒ XG is Fp-acyclic” holds for

1. Smith: G = Zpk .

2. G is p-group.

3. Any G , semi-free action (Gx = G or e), and p dividing |G |.

Need to divide into two cases:

I Semi-free action: Smith condition must be satisfied.

I General action, |G | is not prime power: Smith condition needs
not be satisfied.

The first was studied by Lowell Jones. The second was studied by
Robert Oliver.
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1. Converse of Smith

Theorem [Lowell Jones 1971]
F is Zn-acyclic
=⇒ F = XZn for a contractible X with semi-free Zn-action.

Remark Zn-acyclic ⇐⇒ Zp-acyclic for all p|n.

Theorem [Robert Oliver 1975]
For any G such that |G | is not prime power, there is nG , such that
F = XG for a contractible X with G -action
⇐⇒ χ(F ) = 1 mod nG .



1. Pseudo-equivalence Extension

Definition A G -map is a pseudo-equivalence if it is a homotopy
equivalence after forgetting the G -action.

f
F Y

X

g
'add G -cells

Pseudo-equivalence Extension Problem
Always assume: F = XG (F has trivial G -action), and adding free
G -cells (semi-free), or adding non-fixed G -cells (general).

Jones and Oliver: The case Y is a single point.
Our problem: Y not contractible, especially π = π1Y non-trivial.
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1. Pseudo-equivalence Extension

f
F Y

X

g
'XG=

Oliver and Petrie (1982) studied the general problem, with
isotropies of X − F in a prescribed family. However, they only
conclude quasi-equivalence instead of pseudo-equivalence.

Quasi-equivalence: π1X ∼= π1Y and H∗(X ;Z) ∼= H∗(Y ;Z)

Pseudo-equivalence: π1X ∼= π1Y and H∗(X ;Zπ) ∼= H∗(Y ;Zπ)
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2. General Action: Pseudo-equivalence Invariant

|G | is not prime power
=⇒ There is nG , χ(XG ) = 1 mod nG for contractible G -space X .
=⇒ For pseudo-equiv g : X → Y , χ(XG ) = χ(Y G ) mod nG .
=⇒ χ(XG ) mod nG is pseudo-equivalence invariant.

Second =⇒ : Apply Oliver to contractible G -space Cone(g).

Remark Pseudo-equivalence has no inverse. To get equivalence
relation, need zig-zaging sequence of pseudo-equivalences

X ← • → • ← • → • · · · • ← • → Y

χ(XG ) mod nG is an invariant in this sense.
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2. General Action: Main Theorem

Theorem
Suppose |G | is not prime power, and Y G

1 ,Y
G
2 , . . . ,Y

G
k are

components of Y G . Then there is a subgroup NY ⊂ Zk , such that
f : F → Y can be extended to a pseudo-equivalence G -map
g : X → Y , with XG = F , if and only if

( χ(F1)− χ(Y G
1 ), . . . , χ(Fk)− χ(Y G

k ) ) ∈ NY , Fi = f −1(Y G
i ).

Moreover,

nGZk ⊂ NY ⊂ {(ai ) : nG divides
∑

ai}.

First ⊂: component-wise χ(Fi ) = χ(Y G
i ) mod nG is sufficient.

Second ⊂: global χ(F ) = χ(Y G ) mod nG is necessary.
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2. General Action: Connected Y G

NY = nGZ for k = 1, i.e., Y G is connected.

Theorem
Suppose |G | is not prime power, and Y G is connected. Then
f : F → Y can be extended to a pseudo-equivalence G -map
g : X → Y , with XG = F , if and only if χ(F ) = χ(Y G ) mod nG .

Corollary
Suppose |G | is not prime power, and Y G is non-empty and
connected. Then F = XG for some X pseudo-equivalent to Y (no
direct map needed) if and only if χ(F ) = χ(Y G ) mod nG .
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2. General Action: Application

Corollary
If |G | is not prime power, Y is connected, χ(Y ) = 0 mod nG , then
G acts on a homotopy Y with no fixed points.

G -action on X , induces homomorphism G → Out(π), π = π1X .
If the action has fixed point, then the homomorphism lifts to
G → Aut(π).

Problem: If G → Out(π) lifts to Aut(π), does the action have
fixed point?

The corollary provides plenty of examples of G -action on homotopy
Y with and without fixed points.

Theorem
Suppose |G | is not prime power. Then there is an aspherical
manifold M with centerless fundamental group, such that
G → Out(π) lifts to Aut(π), and the action has no fixed point.
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2. General Action: Proof

Need to show

1. NY = {(χ(XG
i )− χ(Y G

i ))ki=1 : pseudo-equiv X → Y } is an
abelian subgroup.

2. Component-wise Euler condition χ(Fi ) = χ(Y G
i ) mod nG

=⇒ pseudo-equivalence extension exists.

The first is by general constructions, which also shows that NY is
functorial. The second is by the following steps:

I Reduce to extending f : F → Y , Y connected and trivial
action.

I Partition of Euler number: If F 6= ∅ and χ(F ) = χ(Y ) mod n,
then by changing F and f by homotopy, we have
χ(f −1(σ)) = 1 mod n for each cell σ of Y .

I Oliver’s argument is relative, allowing induction on cells.

I Treat F = ∅ by the special case Y = S1.
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2. General Action: F = ∅ and Y = S1

Corollary If |G | is not prime power, then there is a G -space
X ' S1, such that XG = ∅.

Let V = ker(RG → R) ⊂ RG , and Z = unit sphere of ⊕kV .

D

Z

x
Gx = Sylow P

Z ∨x D/∂D Z

We have D/∂D ∼=P Z and G -map of degree 1± |G/NP |

Z → Z ∨Gx G (D/∂D)→ Z .

Repeat and modify for all Pi , get G -map φ : Z → Z of degree

1 + a1|G/NP1 |+ · · ·+ an|G/NPn | = 0.

Mapping torus X = T (φ)→ S1 is '.
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2. General Action: Local vs Global Euler

nGZk ⊂ NY ⊂ {(ai ) ∈ Zk : nG divides
∑

ai}.

NY = Zk (no Euler condition) if nG = 1. By Oliver (1975), this
means G is not of the form

P C H C G , |P| and |G/H| prime power, and H/P cyclic.

Theorem
Suppose nG = 0, which means

P C G , |P| prime power, and G/P cyclic.

Let Γ on Ỹ be the lifting of G on Y . If the connected components
Y G

1 , . . . ,Y
G
k of Y G satisfy

1. Induced splittings G
si−→ Γ are not π-conjugate.

2. π1Y
G
i → π1Y are injective.

Then NY = nGZk .
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2. General Action: Local vs Global Euler

Theorem [Oliver and Petrie 1982]

Consider G = Dp, the dihedral group of order 2p (p an odd
prime). Consider f : F → Y , Y simply connected.

Let Y
Cp

1 , . . . ,Y
Cp

l be connected components of Y Cp . Then f has
pseudo-equivalence extension if and only if

χ(F ∩ f −1(Y
Cp

i )) = χ(Y G ∩ Y
Cp

i ) for all i .

Y

Y Dp

Y Cp

χ-trade off



3. Semi-free Action: Pseudo-equivalence Invariant

For semi-free action, pseudo-equivalence g : X → Y implies Smith
condition

H∗(XG ;Fpπ) ∼= H∗(Y G ;Fpπ), p| |G |.

So H∗(−G ;Fpπ) is pseudo-equivalence invariant, not as easy to use
as Euler number.



3. Semi-free Action: Main Theorem

Theorem (fixed target)

A map f : F → Y (no G-action) has pseudo-equivalent extension
g : X → Y , with semi-free G-space X and F = XG , if and only if

1. Smith: H∗(F ;Fpπ) ∼= H∗(Y ;Fpπ),

2. K-theory: [C (f̃ )] ∈ K̃0(Z[π × G ]) vanishes.

Remark C (f̃ ) is Zπ-chain complex, regarded as Z[π × G ]-chain
complex by trivial G -action. Then Smith condition implies C (f̃ )
has finite Z[π × G ]-projective resolution.

Theorem (semi-free target)

Consider G acting semi-freely on Y and f : F → Y G ⊂ Y , exists
exists if and only if Smith condition is satisfied and K-theory
obstruction [C (f̃ )] ∈ K̃0(Z[Γ]) vanishes.
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3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.

Attach free G -cells to F to get isomorphism on π1 and then
inductively kill Hi (f ;Zπ). Get f n : X n → Y , n > dimF , dimY ,
such that Hi (f

n;Zπ) = 0 for i ≤ n. Get exact sequence

0→ C∗(f̃ )→ C∗(f̃ n)→ C∗−1(X̃ n, F̃ )→ 0.

The obstruction is the “stable Z(π × G )-freeness” of
Hn+1(f n;Zπ). Since C∗(X̃ n, F̃ ) is Z(π×G )-free, the obstruction is

±[Hn+1(f n;Zπ)] = [C∗(f̃ n)] = [C∗(f̃ )] ∈ K̃0(Z[π × G ]).



3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.

Attach free G -cells to F to get isomorphism on π1 and then
inductively kill Hi (f ;Zπ). Get f n : X n → Y , n > dimF , dimY ,
such that Hi (f

n;Zπ) = 0 for i ≤ n. Get exact sequence

0→ C∗(f̃ )→ C∗(f̃ n)→ C∗−1(X̃ n, F̃ )→ 0.

The obstruction is the “stable Z(π × G )-freeness” of
Hn+1(f n;Zπ). Since C∗(X̃ n, F̃ ) is Z(π×G )-free, the obstruction is

±[Hn+1(f n;Zπ)] = [C∗(f̃ n)] = [C∗(f̃ )] ∈ K̃0(Z[π × G ]).



3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.

Attach free G -cells to F to get isomorphism on π1 and then
inductively kill Hi (f ;Zπ). Get f n : X n → Y , n > dimF , dimY ,
such that Hi (f

n;Zπ) = 0 for i ≤ n. Get exact sequence

0→ C∗(f̃ )→ C∗(f̃ n)→ C∗−1(X̃ n, F̃ )→ 0.

The obstruction is the “stable Z(π × G )-freeness” of
Hn+1(f n;Zπ). Since C∗(X̃ n, F̃ ) is Z(π×G )-free, the obstruction is

±[Hn+1(f n;Zπ)] = [C∗(f̃ n)] = [C∗(f̃ )] ∈ K̃0(Z[π × G ]).



3. Semi-Free Action: Example

Y = S1, π = {t i : i ∈ Z}. F is double mapping torus T (a, b) of
maps Sd → Sd of deg a, b

a

b
Sd

F

f

S1

For G = Zn, we want to extend f : F = T (a, b)→ Y to semi-free
pseudo-equivalence.
The only non-trivial Zπ-homology of f is

H = Hd(f ;Z[t, t−1]) = Z[t, t−1]/(at − b).
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3. Semi-Free Action: Example

The pullback diagrams

Z[Zn][t, t−1] −−−−→ Z[Zn]
Σ [t, t−1]y y

Z[t, t−1] −−−−→ Zn[t, t−1]

Z[Zn] −−−−→ Z[Zn]
Σy y

Z −−−−→ Zn

induce ∂ between Bass-Heller-Swan decompositions

K1(Zn[t, t−1]) = K1(Zn)⊕ K0(Zn)⊕ NK1(Zn)⊕ NK1(Zn)

↓ ∂
K̃0(Z[Zn][t, t−1]) = K̃0(Z[Zn])⊕ K−1(Z[Zn])⊕ NK0(Z[Zn])⊕ NK0(Z[Zn])



3. Semi-Free Action: Example 1

For G = Zn, n = pk , p prime, a = p, b = 1, we have
H = Z[t, t−1]/(pt − 1), Smith condition satisfied.

[pt − 1] = ([p − 1], 0, 0, [(p − 1)−1p]) in

K1(Zn[t, t−1]) = K1(Zn)⊕ K0(Zn)⊕ NK1(Zn)⊕ NK1(Zn),

goes to [H] = (0, 0, 0, ∂[(p − 1)−1p]) in

K̃0(Z[Zn][t, t−1]) = K̃0(Z[Zn])⊕K−1(Z[Zn])⊕NK0(Z[Zn])⊕NK0(Z[Zn])

I For k = 1, [(p − 1)−1p] ∈ NK1(Zn) already vanishes. So
pseudo-equivalence extension exists.

I For k > 1, ∂[(p − 1)−1p] ∈ NK0(Z[Zn]) is non-trivial. So
pseudo-equivalence extension does not exist.
(still obstruction even in ANR category).
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3. Semi-Free Action: Example 1

Theorem
If G has element of order p2 (say G is a p-group and G 6= Z⊕k

p ),
then there is no semi-free G -action on homotopy S1 with T (p, 1)
as fixed point.



3. Semi-Free Action: Example 2

If G = Zn, n is not prime power, then n = n1n2, with n1, n2 > 1
and coprime. Pick a, b = 1− a satisfying

(a, b) = (1, 0) mod n1, (a, b) = (0, 1) mod n2.

Then H = Z[t, t−1]/(at − b) satisfies Smith condition.

[at − b] = (0, [aZn], 0, 0) in (note Zn = aZn ⊕ bZn)

K1(Zn[t, t−1]) = K1(Zn)⊕ K0(Zn)⊕ NK1(Zn)⊕ NK1(Zn),

goes to [H] = (0, ∂[aZn], 0, 0) in

K̃0(Z[Zn][t, t−1]) = K̃0(Z[Zn])⊕K−1(Z[Zn])⊕NK0(Z[Zn])⊕NK0(Z[Zn])

No longer obstruction in ANR category!



3. Semi-Free Action: Example 2

If G = Zn, n is not prime power, then n = n1n2, with n1, n2 > 1
and coprime. Pick a, b = 1− a satisfying

(a, b) = (1, 0) mod n1, (a, b) = (0, 1) mod n2.

Then H = Z[t, t−1]/(at − b) satisfies Smith condition.

[at − b] = (0, [aZn], 0, 0) in (note Zn = aZn ⊕ bZn)

K1(Zn[t, t−1]) = K1(Zn)⊕ K0(Zn)⊕ NK1(Zn)⊕ NK1(Zn),

goes to [H] = (0, ∂[aZn], 0, 0) in

K̃0(Z[Zn][t, t−1]) = K̃0(Z[Zn])⊕K−1(Z[Zn])⊕NK0(Z[Zn])⊕NK0(Z[Zn])

No longer obstruction in ANR category!



3. Semi-Free Action: Example 2

If G = Zn, n is not prime power, then n = n1n2, with n1, n2 > 1
and coprime. Pick a, b = 1− a satisfying

(a, b) = (1, 0) mod n1, (a, b) = (0, 1) mod n2.

Then H = Z[t, t−1]/(at − b) satisfies Smith condition.

[at − b] = (0, [aZn], 0, 0) in (note Zn = aZn ⊕ bZn)

K1(Zn[t, t−1]) = K1(Zn)⊕ K0(Zn)⊕ NK1(Zn)⊕ NK1(Zn),

goes to [H] = (0, ∂[aZn], 0, 0) in

K̃0(Z[Zn][t, t−1]) = K̃0(Z[Zn])⊕K−1(Z[Zn])⊕NK0(Z[Zn])⊕NK0(Z[Zn])

No longer obstruction in ANR category!



3. Semi-Free Action: Example 2

Calculate ∂[aZn] by exact sequence

K̃0(Z)⊕K̃0(Z[ξn])→ K̃0(Zn)
∂−→ K−1(Z[Zn])→ K−1(Z)⊕K−1(Z[ξn]).

This is (K0(Zn) = ⊕k
i=1K0(Zp

mi
i

) = Zk for n = pm1
1 . . . pmk

k )

0⊕ finite→ Zk/Z(1, . . . , 1)
∂−→ K−1(Z[Zn])→ 0⊕ torsionfree

∂ is injective. In fact K̃0(Zn) is a direct summand of K−1(Z[Zn]).

Take n1 = pm1
1 , n2 = pm2

2 . . . pmk
k

=⇒ [aZn] = [1, 0, . . . , 0] 6= 0 ∈ K̃0(Zn)
=⇒ ∂[aZn] 6= 0 ∈ K−1(Z[Zn]).
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3. Semi-Free Action: Summary

For G = Zn acting on homotopy circle:

I If n is not primer power, then we get K−1-obstruction
counterexample.

I If p2 divides n, then get NK0-obstruction counterexample.



Thank You


