Converse of Smith Theory

Min Yan
Hong Kong University of Science and Technology

International Workshop on Algebraic Topology SCMS, Shanghai, 2019

Joint with S. Cappell and S. Weinberger

- Smith Theory and Pseudo-equivalence
- General Action: Oliver
- Semi-Free Action: Jones

Always assume: Finite CW-complex, Finite group

1. Smith Theory

Paul Althaus Smith
Fixed-Point Theorems for Periodic Transformations.
Amer. J. Math., 63(1):1-8, 1941.

Theorem $\mathrm{I}(\alpha)$. Let p be a prime and M a finite dimensional locally bicompact space which is acyclic mod p. Every homeomorphic transformation of period $p^{a}(\alpha>0)$ of M into itself admits at least one fixed point.

Theorem II. The totality L of fixed points which theorem $I(1)$ asserts to be non-empty, is acyclic modulo p.

1. Smith Theory

Paul Althaus Smith
Fixed-Point Theorems for Periodic Transformations.
Amer. J. Math., 63(1):1-8, 1941.

Theorem $\mathrm{I}(\alpha)$. Let p be a prime and M a finite dimensional locally bicompact space which is acyclic mod p. Every homeomorphic transformation of period $p^{a}(\alpha>0)$ of M into itself admits at least one fixed point.

Theorem II. The totality L of fixed points which theorem $I(1)$ asserts to be non-empty, is acyclic modulo p.

Theorem

$$
\tilde{H}_{*}\left(X ; \mathbb{F}_{p}\right)=0 \Longrightarrow \tilde{H}_{*}\left(X^{G} ; \mathbb{F}_{p}\right)=0
$$

1. Smith Theory

" X is \mathbb{F}_{p}-acyclic $\Longrightarrow X^{G}$ is \mathbb{F}_{p}-acyclic" holds for

1. Smith: $G=\mathbb{Z}_{p^{k}}$.

1. Smith Theory

" X is \mathbb{F}_{p}-acyclic $\Longrightarrow X^{G}$ is \mathbb{F}_{p}-acyclic" holds for

1. Smith: $G=\mathbb{Z}_{p^{k}}$.
2. G is p-group.

1. Smith Theory

" X is $\mathbb{F}_{p^{\prime}}$-acyclic $\Longrightarrow X^{G}$ is \mathbb{F}_{p}-acyclic" holds for

1. Smith: $G=\mathbb{Z}_{p^{k}}$.
2. G is p-group.
3. Any G, semi-free action ($G_{X}=G$ or $\left.e\right)$, and p dividing $|G|$.

1. Smith Theory

" X is \mathbb{F}_{p}-acyclic $\Longrightarrow X^{G}$ is \mathbb{F}_{p}-acyclic" holds for

1. Smith: $G=\mathbb{Z}_{p^{k}}$.
2. G is p-group.
3. Any G, semi-free action ($G_{X}=G$ or $\left.e\right)$, and p dividing $|G|$.

Need to divide into two cases:

- Semi-free action: Smith condition must be satisfied.
- General action, $|G|$ is not prime power: Smith condition needs not be satisfied.

The first was studied by Lowell Jones. The second was studied by Robert Oliver.

1. Converse of Smith

Theorem [Lowell Jones 1971]
F is \mathbb{Z}_{n}-acyclic
$\Longrightarrow F=X^{\mathbb{Z}_{n}}$ for a contractible X with semi-free \mathbb{Z}_{n}-action.
Remark \mathbb{Z}_{n}-acyclic $\Longleftrightarrow \mathbb{Z}_{p}$-acyclic for all $p \mid n$.
Theorem [Robert Oliver 1975]
For any G such that $|G|$ is not prime power, there is n_{G}, such that $F=X^{G}$ for a contractible X with G-action
$\Longleftrightarrow \chi(F)=1 \bmod n_{G}$.

1. Pseudo-equivalence Extension

Definition A G-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the G-action.

1. Pseudo-equivalence Extension

Definition A G-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the G-action.

1. Pseudo-equivalence Extension

Definition A G-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the G-action.

1. Pseudo-equivalence Extension

Definition A G-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the G-action.

Pseudo-equivalence Extension Problem

Always assume: $F=X^{G}$ (F has trivial G-action), and adding free G-cells (semi-free), or adding non-fixed G-cells (general).

1. Pseudo-equivalence Extension

Definition A G-map is a pseudo-equivalence if it is a homotopy equivalence after forgetting the G-action.

Pseudo-equivalence Extension Problem

Always assume: $F=X^{G}$ (F has trivial G-action), and adding free G-cells (semi-free), or adding non-fixed G-cells (general).

Jones and Oliver: The case Y is a single point. Our problem: Y not contractible, especially $\pi=\pi_{1} Y$ non-trivial.

1. Pseudo-equivalence Extension

Oliver and Petrie (1982) studied the general problem, with isotropies of $X-F$ in a prescribed family. However, they only conclude quasi-equivalence instead of pseudo-equivalence.

1. Pseudo-equivalence Extension

Oliver and Petrie (1982) studied the general problem, with isotropies of $X-F$ in a prescribed family. However, they only conclude quasi-equivalence instead of pseudo-equivalence.

Quasi-equivalence:

$$
\pi_{1} X \cong \pi_{1} Y \text { and } H_{*}(X ; \mathbb{Z}) \cong H_{*}(Y ; \mathbb{Z})
$$

Pseudo-equivalence:

$$
\pi_{1} X \cong \pi_{1} Y \text { and } H_{*}(X ; \mathbb{Z} \pi) \cong H_{*}(Y ; \mathbb{Z} \pi)
$$

1. Pseudo-equivalence Extension

Oliver and Petrie (1982) studied the general problem, with isotropies of $X-F$ in a prescribed family. However, they only conclude quasi-equivalence instead of pseudo-equivalence.

Quasi-equivalence:

$$
\pi_{1} X \cong \pi_{1} Y \text { and } H_{*}(X ; \mathbb{Z}) \cong H_{*}(Y ; \mathbb{Z})
$$

Pseudo-equivalence: $\quad \pi_{1} X \cong \pi_{1} Y$ and $H_{*}(X ; \mathbb{Z} \pi) \cong H_{*}(Y ; \mathbb{Z} \pi)$

2. General Action: Pseudo-equivalence Invariant

$G \mid$ is not prime power
\Longrightarrow There is $n_{G}, \chi\left(X^{G}\right)=1 \bmod n_{G}$ for contractible G-space X.
\Longrightarrow For pseudo-equiv $g: X \rightarrow Y, \chi\left(X^{G}\right)=\chi\left(Y^{G}\right) \bmod n_{G}$.
$\Longrightarrow \chi\left(X^{G}\right) \bmod n_{G}$ is pseudo-equivalence invariant.
Second \Longrightarrow : Apply Oliver to contractible G-space Cone (g).

2. General Action: Pseudo-equivalence Invariant

$G \mid$ is not prime power
\Longrightarrow There is $n_{G}, \chi\left(X^{G}\right)=1 \bmod n_{G}$ for contractible G-space X.
\Longrightarrow For pseudo-equiv $g: X \rightarrow Y, \chi\left(X^{G}\right)=\chi\left(Y^{G}\right) \bmod n_{G}$.
$\Longrightarrow \chi\left(X^{G}\right) \bmod n_{G}$ is pseudo-equivalence invariant.
Second \Longrightarrow : Apply Oliver to contractible G-space Cone (g).
Remark Pseudo-equivalence has no inverse. To get equivalence relation, need zig-zaging sequence of pseudo-equivalences

$$
X \leftarrow \bullet \rightarrow \bullet \leftarrow \bullet \rightarrow \bullet \cdots \bullet \leftarrow \bullet \rightarrow Y
$$

$\chi\left(X^{G}\right) \bmod n_{G}$ is an invariant in this sense.

2. General Action: Main Theorem

Theorem

Suppose $|G|$ is not prime power, and $Y_{1}^{G}, Y_{2}^{G}, \ldots, Y_{k}^{G}$ are components of Y^{G}. Then there is a subgroup $N_{Y} \subset \mathbb{Z}^{k}$, such that $f: F \rightarrow Y$ can be extended to a pseudo-equivalence G-map $g: X \rightarrow Y$, with $X^{G}=F$, if and only if

$$
\left(\chi\left(F_{1}\right)-\chi\left(Y_{1}^{G}\right), \ldots, \chi\left(F_{k}\right)-\chi\left(Y_{k}^{G}\right)\right) \in N_{Y}, \quad F_{i}=f^{-1}\left(Y_{i}^{G}\right)
$$

Moreover,

$$
n_{G} \mathbb{Z}^{k} \subset N_{Y} \subset\left\{\left(a_{i}\right): n_{G} \text { divides } \sum a_{i}\right\}
$$

2. General Action: Main Theorem

Theorem

Suppose $|G|$ is not prime power, and $Y_{1}^{G}, Y_{2}^{G}, \ldots, Y_{k}^{G}$ are components of Y^{G}. Then there is a subgroup $N_{Y} \subset \mathbb{Z}^{k}$, such that $f: F \rightarrow Y$ can be extended to a pseudo-equivalence G-map $g: X \rightarrow Y$, with $X^{G}=F$, if and only if

$$
\left(\chi\left(F_{1}\right)-\chi\left(Y_{1}^{G}\right), \ldots, \chi\left(F_{k}\right)-\chi\left(Y_{k}^{G}\right)\right) \in N_{Y}, \quad F_{i}=f^{-1}\left(Y_{i}^{G}\right)
$$

Moreover,

$$
n_{G} \mathbb{Z}^{k} \subset N_{Y} \subset\left\{\left(a_{i}\right): n_{G} \text { divides } \sum a_{i}\right\} .
$$

First \subset : component-wise $\chi\left(F_{i}\right)=\chi\left(Y_{i}^{G}\right) \bmod n_{G}$ is sufficient. Second \subset : global $\chi(F)=\chi\left(Y^{G}\right)$ mod n_{G} is necessary.

2. General Action: Connected Y^{G}

$N_{Y}=n_{G} \mathbb{Z}$ for $k=1$, i.e., Y^{G} is connected.

Theorem

Suppose $|G|$ is not prime power, and Y^{G} is connected. Then
$f: F \rightarrow Y$ can be extended to a pseudo-equivalence G-map
$g: X \rightarrow Y$, with $X^{G}=F$, if and only if $\chi(F)=\chi\left(Y^{G}\right) \bmod n_{G}$.

2. General Action: Connected Y^{G}

$N_{Y}=n_{G} \mathbb{Z}$ for $k=1$, i.e., Y^{G} is connected.

Theorem

Suppose $|G|$ is not prime power, and Y^{G} is connected. Then $f: F \rightarrow Y$ can be extended to a pseudo-equivalence G-map $g: X \rightarrow Y$, with $X^{G}=F$, if and only if $\chi(F)=\chi\left(Y^{G}\right) \bmod n_{G}$.

Corollary

Suppose $|G|$ is not prime power, and Y^{G} is non-empty and connected. Then $F=X^{G}$ for some X pseudo-equivalent to Y (no direct map needed) if and only if $\chi(F)=\chi\left(Y^{G}\right) \bmod n_{G}$.

2. General Action: Application

Corollary

If $|G|$ is not prime power, Y is connected, $\chi(Y)=0 \bmod n_{G}$, then
G acts on a homotopy Y with no fixed points.

2. General Action: Application

Corollary

If $|G|$ is not prime power, Y is connected, $\chi(Y)=0 \bmod n_{G}$, then
G acts on a homotopy Y with no fixed points.
G-action on X, induces homomorphism $G \rightarrow \operatorname{Out}(\pi), \pi=\pi_{1} X$. If the action has fixed point, then the homomorphism lifts to $G \rightarrow \operatorname{Aut}(\pi)$.

2. General Action: Application

Corollary

If $|G|$ is not prime power, Y is connected, $\chi(Y)=0 \bmod n_{G}$, then
G acts on a homotopy Y with no fixed points.
G-action on X, induces homomorphism $G \rightarrow \operatorname{Out}(\pi), \pi=\pi_{1} X$. If the action has fixed point, then the homomorphism lifts to $G \rightarrow \operatorname{Aut}(\pi)$.

Problem: If $G \rightarrow \operatorname{Out}(\pi)$ lifts to $\operatorname{Aut}(\pi)$, does the action have fixed point?

2. General Action: Application

Corollary

If $|G|$ is not prime power, Y is connected, $\chi(Y)=0 \bmod n_{G}$, then G acts on a homotopy Y with no fixed points.
G-action on X, induces homomorphism $G \rightarrow \operatorname{Out}(\pi), \pi=\pi_{1} X$. If the action has fixed point, then the homomorphism lifts to $G \rightarrow \operatorname{Aut}(\pi)$.

Problem: If $G \rightarrow \operatorname{Out}(\pi)$ lifts to $\operatorname{Aut}(\pi)$, does the action have fixed point?

The corollary provides plenty of examples of G-action on homotopy Y with and without fixed points.

2. General Action: Application

Corollary

If $|G|$ is not prime power, Y is connected, $\chi(Y)=0 \bmod n_{G}$, then
G acts on a homotopy Y with no fixed points.
G-action on X, induces homomorphism $G \rightarrow \operatorname{Out}(\pi), \pi=\pi_{1} X$.
If the action has fixed point, then the homomorphism lifts to $G \rightarrow \operatorname{Aut}(\pi)$.

Problem: If $G \rightarrow \operatorname{Out}(\pi)$ lifts to $\operatorname{Aut}(\pi)$, does the action have fixed point?

The corollary provides plenty of examples of G-action on homotopy Y with and without fixed points.

Theorem

Suppose $|G|$ is not prime power. Then there is an aspherical manifold M with centerless fundamental group, such that $G \rightarrow \operatorname{Out}(\pi)$ lifts to $\operatorname{Aut}(\pi)$, and the action has no fixed point.

2. General Action: Proof

Need to show

1. $N_{Y}=\left\{\left(\chi\left(X_{i}^{G}\right)-\chi\left(Y_{i}^{G}\right)\right)_{i=1}^{k}\right.$: pseudo-equiv $\left.X \rightarrow Y\right\}$ is an abelian subgroup.
2. Component-wise Euler condition $\chi\left(F_{i}\right)=\chi\left(Y_{i}^{G}\right) \bmod n_{G}$ \Longrightarrow pseudo-equivalence extension exists.

2. General Action: Proof

Need to show

1. $N_{Y}=\left\{\left(\chi\left(X_{i}^{G}\right)-\chi\left(Y_{i}^{G}\right)\right)_{i=1}^{k}\right.$: pseudo-equiv $\left.X \rightarrow Y\right\}$ is an abelian subgroup.
2. Component-wise Euler condition $\chi\left(F_{i}\right)=\chi\left(Y_{i}^{G}\right) \bmod n_{G}$ \Longrightarrow pseudo-equivalence extension exists.

The first is by general constructions, which also shows that N_{Y} is functorial. The second is by the following steps:

2. General Action: Proof

Need to show

1. $N_{Y}=\left\{\left(\chi\left(X_{i}^{G}\right)-\chi\left(Y_{i}^{G}\right)\right)_{i=1}^{k}\right.$: pseudo-equiv $\left.X \rightarrow Y\right\}$ is an abelian subgroup.
2. Component-wise Euler condition $\chi\left(F_{i}\right)=\chi\left(Y_{i}^{G}\right) \bmod n_{G}$ \Longrightarrow pseudo-equivalence extension exists.

The first is by general constructions, which also shows that N_{Y} is functorial. The second is by the following steps:

- Reduce to extending $f: F \rightarrow Y, Y$ connected and trivial action.

2. General Action: Proof

Need to show

1. $N_{Y}=\left\{\left(\chi\left(X_{i}^{G}\right)-\chi\left(Y_{i}^{G}\right)\right)_{i=1}^{k}\right.$: pseudo-equiv $\left.X \rightarrow Y\right\}$ is an abelian subgroup.
2. Component-wise Euler condition $\chi\left(F_{i}\right)=\chi\left(Y_{i}^{G}\right) \bmod n_{G}$ \Longrightarrow pseudo-equivalence extension exists.
The first is by general constructions, which also shows that N_{Y} is functorial. The second is by the following steps:

- Reduce to extending $f: F \rightarrow Y, Y$ connected and trivial action.
- Partition of Euler number: If $F \neq \emptyset$ and $\chi(F)=\chi(Y) \bmod n$, then by changing F and f by homotopy, we have $\chi\left(f^{-1}(\sigma)\right)=1 \bmod n$ for each cell σ of Y.

2. General Action: Proof

Need to show

1. $N_{Y}=\left\{\left(\chi\left(X_{i}^{G}\right)-\chi\left(Y_{i}^{G}\right)\right)_{i=1}^{k}\right.$: pseudo-equiv $\left.X \rightarrow Y\right\}$ is an abelian subgroup.
2. Component-wise Euler condition $\chi\left(F_{i}\right)=\chi\left(Y_{i}^{G}\right) \bmod n_{G}$ \Longrightarrow pseudo-equivalence extension exists.
The first is by general constructions, which also shows that N_{Y} is functorial. The second is by the following steps:

- Reduce to extending $f: F \rightarrow Y, Y$ connected and trivial action.
- Partition of Euler number: If $F \neq \emptyset$ and $\chi(F)=\chi(Y) \bmod n$, then by changing F and f by homotopy, we have $\chi\left(f^{-1}(\sigma)\right)=1 \bmod n$ for each cell σ of Y.
- Oliver's argument is relative, allowing induction on cells.

2. General Action: Proof

Need to show

1. $N_{Y}=\left\{\left(\chi\left(X_{i}^{G}\right)-\chi\left(Y_{i}^{G}\right)\right)_{i=1}^{k}\right.$: pseudo-equiv $\left.X \rightarrow Y\right\}$ is an abelian subgroup.
2. Component-wise Euler condition $\chi\left(F_{i}\right)=\chi\left(Y_{i}^{G}\right) \bmod n_{G}$ \Longrightarrow pseudo-equivalence extension exists.

The first is by general constructions, which also shows that N_{Y} is functorial. The second is by the following steps:

- Reduce to extending $f: F \rightarrow Y, Y$ connected and trivial action.
- Partition of Euler number: If $F \neq \emptyset$ and $\chi(F)=\chi(Y) \bmod n$, then by changing F and f by homotopy, we have $\chi\left(f^{-1}(\sigma)\right)=1 \bmod n$ for each cell σ of Y.
- Oliver's argument is relative, allowing induction on cells.
- Treat $F=\emptyset$ by the special case $Y=S^{1}$.

2. General Action: $F=\emptyset$ and $Y=S^{1}$

Corollary If $|G|$ is not prime power, then there is a G-space $X \simeq S^{1}$, such that $X^{G}=\emptyset$.

2. General Action: $F=\emptyset$ and $Y=S^{1}$

Corollary If $|G|$ is not prime power, then there is a G-space $X \simeq S^{1}$, such that $X^{G}=\emptyset$.

Let $V=\operatorname{ker}(\mathbb{R} G \rightarrow \mathbb{R}) \subset \mathbb{R} G$, and $Z=$ unit sphere of $\oplus^{k} V$.

2. General Action: $F=\emptyset$ and $Y=S^{1}$

Corollary If $|G|$ is not prime power, then there is a G-space $X \simeq S^{1}$, such that $X^{G}=\emptyset$.

Let $V=\operatorname{ker}(\mathbb{R} G \rightarrow \mathbb{R}) \subset \mathbb{R} G$, and $Z=$ unit sphere of $\oplus^{k} V$.

2. General Action: $F=\emptyset$ and $Y=S^{1}$

Corollary If $|G|$ is not prime power, then there is a G-space $X \simeq S^{1}$, such that $X^{G}=\emptyset$.

Let $V=\operatorname{ker}(\mathbb{R} G \rightarrow \mathbb{R}) \subset \mathbb{R} G$, and $Z=$ unit sphere of $\oplus^{k} V$.

2. General Action: $F=\emptyset$ and $Y=S^{1}$

Corollary If $|G|$ is not prime power, then there is a G-space $X \simeq S^{1}$, such that $X^{G}=\emptyset$.

Let $V=\operatorname{ker}(\mathbb{R} G \rightarrow \mathbb{R}) \subset \mathbb{R} G$, and $Z=$ unit sphere of $\oplus^{k} V$.

2. General Action: $F=\emptyset$ and $Y=S^{1}$

Corollary If $|G|$ is not prime power, then there is a G-space $X \simeq S^{1}$, such that $X^{G}=\emptyset$.

Let $V=\operatorname{ker}(\mathbb{R} G \rightarrow \mathbb{R}) \subset \mathbb{R} G$, and $Z=$ unit sphere of $\oplus^{k} V$.

We have $D / \partial D \cong_{P} Z$ and G-map of degree $1 \pm\left|G / N_{P}\right|$

$$
Z \rightarrow Z \vee_{G x} G(D / \partial D) \rightarrow Z
$$

2. General Action: $F=\emptyset$ and $Y=S^{1}$

Corollary If $|G|$ is not prime power, then there is a G-space $X \simeq S^{1}$, such that $X^{G}=\emptyset$.

Let $V=\operatorname{ker}(\mathbb{R} G \rightarrow \mathbb{R}) \subset \mathbb{R} G$, and $Z=$ unit sphere of $\oplus^{k} V$.

We have $D / \partial D \cong_{P} Z$ and G-map of degree $1 \pm\left|G / N_{P}\right|$

$$
Z \rightarrow Z \vee_{G x} G(D / \partial D) \rightarrow Z
$$

Repeat and modify for all P_{i}, get G-map $\phi: Z \rightarrow Z$ of degree

$$
1+a_{1}\left|G / N_{P_{1}}\right|+\cdots+a_{n}\left|G / N_{P_{n}}\right|=0 .
$$

2. General Action: $F=\emptyset$ and $Y=S^{1}$

Corollary If $|G|$ is not prime power, then there is a G-space $X \simeq S^{1}$, such that $X^{G}=\emptyset$.

Let $V=\operatorname{ker}(\mathbb{R} G \rightarrow \mathbb{R}) \subset \mathbb{R} G$, and $Z=$ unit sphere of $\oplus^{k} V$.

We have $D / \partial D \cong_{P} Z$ and G-map of degree $1 \pm\left|G / N_{P}\right|$

$$
Z \rightarrow Z \vee_{G x} G(D / \partial D) \rightarrow Z
$$

Repeat and modify for all P_{i}, get G-map $\phi: Z \rightarrow Z$ of degree

$$
1+a_{1}\left|G / N_{P_{1}}\right|+\cdots+a_{n}\left|G / N_{P_{n}}\right|=0 .
$$

Mapping torus $X=T(\phi) \rightarrow S^{1}$ is \simeq.
2. General Action: Local vs Global Euler $n_{G} \mathbb{Z}^{k} \subset N_{Y} \subset\left\{\left(a_{i}\right) \in \mathbb{Z}^{k}: n_{G}\right.$ divides $\left.\sum a_{i}\right\}$.

2. General Action: Local vs Global Euler

$n_{G} \mathbb{Z}^{k} \subset N_{Y} \subset\left\{\left(a_{i}\right) \in \mathbb{Z}^{k}: n_{G}\right.$ divides $\left.\sum a_{i}\right\}$.
$N_{Y}=\mathbb{Z}^{k}$ (no Euler condition) if $n_{G}=1$. By Oliver (1975), this means G is not of the form

$$
P \triangleleft H \triangleleft G, \quad|P| \text { and }|G / H| \text { prime power, and } H / P \text { cyclic. }
$$

2. General Action: Local vs Global Euler

$n_{G} \mathbb{Z}^{k} \subset N_{Y} \subset\left\{\left(a_{i}\right) \in \mathbb{Z}^{k}: n_{G}\right.$ divides $\left.\sum a_{i}\right\}$.
$N_{Y}=\mathbb{Z}^{k}$ (no Euler condition) if $n_{G}=1$. By Oliver (1975), this means G is not of the form

$$
P \triangleleft H \triangleleft G, \quad|P| \text { and }|G / H| \text { prime power, and } H / P \text { cyclic. }
$$

Theorem

Suppose $n_{G}=0$, which means

$$
P \triangleleft G, \quad|P| \text { prime power, and } G / P \text { cyclic. }
$$

Let Γ on \tilde{Y} be the lifting of G on Y. If the connected components $Y_{1}^{G}, \ldots, Y_{k}^{G}$ of Y^{G} satisfy

1. Induced splittings $G \xrightarrow{S_{i}} \Gamma$ are not π-conjugate.
2. $\pi_{1} Y_{i}^{G} \rightarrow \pi_{1} Y$ are injective.

Then $N_{Y}=n_{G} \mathbb{Z}^{k}$.

2. General Action: Local vs Global Euler

Theorem [Oliver and Petrie 1982]
Consider $G=D_{p}$, the dihedral group of order $2 p$ (p an odd prime). Consider $f: F \rightarrow Y, Y$ simply connected.
Let $Y_{1}^{C_{p}}, \ldots, Y_{l}^{C_{p}}$ be connected components of $Y^{C_{p}}$. Then f has pseudo-equivalence extension if and only if

$$
\chi\left(F \cap f^{-1}\left(Y_{i}^{C_{P}}\right)\right)=\chi\left(Y^{G} \cap Y_{i}^{C_{p}}\right) \text { for all } i .
$$

3. Semi-free Action: Pseudo-equivalence Invariant

For semi-free action, pseudo-equivalence $g: X \rightarrow Y$ implies Smith condition

$$
H_{*}\left(X^{G} ; \mathbb{F}_{p} \pi\right) \cong H_{*}\left(Y^{G} ; \mathbb{F}_{p} \pi\right), \quad p| | G \mid
$$

So $H_{*}\left(-{ }^{G} ; \mathbb{F}_{p} \pi\right)$ is pseudo-equivalence invariant, not as easy to use as Euler number.

3. Semi-free Action: Main Theorem

Theorem (fixed target)
A map $f: F \rightarrow Y$ (no G-action) has pseudo-equivalent extension $g: X \rightarrow Y$, with semi-free G-space X and $F=X^{G}$, if and only if

1. Smith: $H_{*}\left(F ; \mathbb{F}_{p} \pi\right) \cong H_{*}\left(Y ; \mathbb{F}_{p} \pi\right)$,
2. K-theory: $[C(\tilde{f})] \in \tilde{K}_{0}(\mathbb{Z}[\pi \times G])$ vanishes.

3. Semi-free Action: Main Theorem

Theorem (fixed target)

A map $f: F \rightarrow Y$ (no G-action) has pseudo-equivalent extension $g: X \rightarrow Y$, with semi-free G-space X and $F=X^{G}$, if and only if

1. Smith: $H_{*}\left(F ; \mathbb{F}_{p} \pi\right) \cong H_{*}\left(Y ; \mathbb{F}_{p} \pi\right)$,
2. K-theory: $[C(\tilde{f})] \in \tilde{K}_{0}(\mathbb{Z}[\pi \times G])$ vanishes.

Remark $C(\tilde{f})$ is $\mathbb{Z} \pi$-chain complex, regarded as $\mathbb{Z}[\pi \times G]$-chain complex by trivial G-action. Then Smith condition implies $C(\tilde{f})$ has finite $\mathbb{Z}[\pi \times G]$-projective resolution.

3. Semi-free Action: Main Theorem

Theorem (fixed target)

A map $f: F \rightarrow Y$ (no G-action) has pseudo-equivalent extension $g: X \rightarrow Y$, with semi-free G-space X and $F=X^{G}$, if and only if

1. Smith: $H_{*}\left(F ; \mathbb{F}_{p} \pi\right) \cong H_{*}\left(Y ; \mathbb{F}_{p} \pi\right)$,
2. K-theory: $[C(\tilde{f})] \in \tilde{K}_{0}(\mathbb{Z}[\pi \times G])$ vanishes.

Remark $C(\tilde{f})$ is $\mathbb{Z} \pi$-chain complex, regarded as $\mathbb{Z}[\pi \times G]$-chain complex by trivial G-action. Then Smith condition implies $C(\tilde{f})$ has finite $\mathbb{Z}[\pi \times G]$-projective resolution.

Theorem (semi-free target)

Consider G acting semi-freely on Y and $f: F \rightarrow Y^{G} \subset Y$, exists exists if and only if Smith condition is satisfied and K-theory obstruction $[C(\tilde{f})] \in \tilde{K}_{0}(\mathbb{Z}[\Gamma])$ vanishes.

3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.

3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.
Attach free G-cells to F to get isomorphism on π_{1} and then inductively kill $H_{i}(f ; \mathbb{Z} \pi)$. Get $f^{n}: X^{n} \rightarrow Y, n>\operatorname{dim} F, \operatorname{dim} Y$, such that $H_{i}\left(f^{n} ; \mathbb{Z} \pi\right)=0$ for $i \leq n$. Get exact sequence

$$
0 \rightarrow C_{*}(\tilde{f}) \rightarrow C_{*}\left(\tilde{f}^{n}\right) \rightarrow C_{*-1}\left(\tilde{X}^{n}, \tilde{F}\right) \rightarrow 0
$$

3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.
Attach free G-cells to F to get isomorphism on π_{1} and then inductively kill $H_{i}(f ; \mathbb{Z} \pi)$. Get $f^{n}: X^{n} \rightarrow Y, n>\operatorname{dim} F, \operatorname{dim} Y$, such that $H_{i}\left(f^{n} ; \mathbb{Z} \pi\right)=0$ for $i \leq n$. Get exact sequence

$$
0 \rightarrow C_{*}(\tilde{f}) \rightarrow C_{*}\left(\tilde{f}^{n}\right) \rightarrow C_{*-1}\left(\tilde{X}^{n}, \tilde{F}\right) \rightarrow 0
$$

The obstruction is the "stable $\mathbb{Z}(\pi \times G)$-freeness" of $H_{n+1}\left(f^{n} ; \mathbb{Z} \pi\right)$. Since $C_{*}\left(\tilde{X}^{n}, \tilde{F}\right)$ is $\mathbb{Z}(\pi \times G)$-free, the obstruction is

$$
\pm\left[H_{n+1}\left(f^{n} ; \mathbb{Z} \pi\right)\right]=\left[C_{*}\left(\tilde{f}^{n}\right)\right]=\left[C_{*}(\tilde{f})\right] \in \tilde{K}_{0}(\mathbb{Z}[\pi \times G])
$$

3. Semi-Free Action: Example

$Y=S^{1}, \pi=\left\{t^{i}: i \in \mathbb{Z}\right\} . F$ is double mapping torus $T(a, b)$ of maps $S^{d} \rightarrow S^{d}$ of deg a, b

3. Semi-Free Action: Example

$Y=S^{1}, \pi=\left\{t^{i}: i \in \mathbb{Z}\right\} . F$ is double mapping torus $T(a, b)$ of maps $S^{d} \rightarrow S^{d}$ of $\operatorname{deg} a, b$

For $G=\mathbb{Z}_{n}$, we want to extend $f: F=T(a, b) \rightarrow Y$ to semi-free pseudo-equivalence.

3. Semi-Free Action: Example

$Y=S^{1}, \pi=\left\{t^{i}: i \in \mathbb{Z}\right\} . F$ is double mapping torus $T(a, b)$ of maps $S^{d} \rightarrow S^{d}$ of deg a, b

For $G=\mathbb{Z}_{n}$, we want to extend $f: F=T(a, b) \rightarrow Y$ to semi-free pseudo-equivalence.
The only non-trivial $\mathbb{Z} \pi$-homology of f is

$$
H=H_{d}\left(f ; \mathbb{Z}\left[t, t^{-1}\right]\right)=\mathbb{Z}\left[t, t^{-1}\right] /(a t-b) .
$$

3. Semi-Free Action: Example

The pullback diagrams

$$
\begin{array}{ccccc}
\mathbb{Z}\left[\mathbb{Z}_{n}\right]\left[t, t^{-1}\right] & \longrightarrow & \frac{\mathbb{Z}\left[\mathbb{Z}_{n}\right]}{\Sigma}\left[t, t^{-1}\right] & \mathbb{Z}\left[\mathbb{Z}_{n}\right] & \downarrow \\
\downarrow & \downarrow & \downarrow & & \frac{\mathbb{Z}\left[\mathbb{Z}_{n}\right]}{\Sigma} \\
\mathbb{Z}\left[t, t^{-1}\right] & \longrightarrow & \mathbb{Z}_{n}\left[t, t^{-1}\right] & \mathbb{Z} & \longrightarrow \\
\mathbb{Z}_{n}
\end{array}
$$

induce ∂ between Bass-Heller-Swan decompositions

$$
\begin{aligned}
& K_{1}\left(\mathbb{Z}_{n}\left[t, t^{-1}\right]\right)=K_{1}\left(\mathbb{Z}_{n}\right) \oplus K_{0}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right) \\
& \downarrow \partial \tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\left[t, t^{-1}\right]\right) \\
&\left.\left.\tilde{\mathbb{Z}}_{n}\right]\right) \oplus K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)
\end{aligned}
$$

3. Semi-Free Action: Example 1

For $G=\mathbb{Z}_{n}, n=p^{k}, p$ prime, $a=p, b=1$, we have $H=\mathbb{Z}\left[t, t^{-1}\right] /(p t-1)$, Smith condition satisfied.

3. Semi-Free Action: Example 1

For $G=\mathbb{Z}_{n}, n=p^{k}, p$ prime, $a=p, b=1$, we have $H=\mathbb{Z}\left[t, t^{-1}\right] /(p t-1)$, Smith condition satisfied.
$[p t-1]=\left([p-1], 0,0,\left[(p-1)^{-1} p\right]\right)$ in

$$
K_{1}\left(\mathbb{Z}_{n}\left[t, t^{-1}\right]\right)=K_{1}\left(\mathbb{Z}_{n}\right) \oplus K_{0}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right)
$$

goes to $[H]=\left(0,0,0, \partial\left[(p-1)^{-1} p\right]\right)$ in
$\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\left[t, t^{-1}\right]\right)=\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)$

3. Semi-Free Action: Example 1

For $G=\mathbb{Z}_{n}, n=p^{k}, p$ prime, $a=p, b=1$, we have $H=\mathbb{Z}\left[t, t^{-1}\right] /(p t-1)$, Smith condition satisfied.
$[p t-1]=\left([p-1], 0,0,\left[(p-1)^{-1} p\right]\right)$ in

$$
K_{1}\left(\mathbb{Z}_{n}\left[t, t^{-1}\right]\right)=K_{1}\left(\mathbb{Z}_{n}\right) \oplus K_{0}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right)
$$

goes to $[H]=\left(0,0,0, \partial\left[(p-1)^{-1} p\right]\right)$ in
$\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\left[t, t^{-1}\right]\right)=\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)$

- For $k=1,\left[(p-1)^{-1} p\right] \in N K_{1}\left(\mathbb{Z}_{n}\right)$ already vanishes. So pseudo-equivalence extension exists.

3. Semi-Free Action: Example 1

For $G=\mathbb{Z}_{n}, n=p^{k}, p$ prime, $a=p, b=1$, we have $H=\mathbb{Z}\left[t, t^{-1}\right] /(p t-1)$, Smith condition satisfied.
$[p t-1]=\left([p-1], 0,0,\left[(p-1)^{-1} p\right]\right)$ in

$$
K_{1}\left(\mathbb{Z}_{n}\left[t, t^{-1}\right]\right)=K_{1}\left(\mathbb{Z}_{n}\right) \oplus K_{0}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right)
$$

goes to $[H]=\left(0,0,0, \partial\left[(p-1)^{-1} p\right]\right)$ in
$\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\left[t, t^{-1}\right]\right)=\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)$

- For $k=1,\left[(p-1)^{-1} p\right] \in N K_{1}\left(\mathbb{Z}_{n}\right)$ already vanishes. So pseudo-equivalence extension exists.
- For $k>1, \partial\left[(p-1)^{-1} p\right] \in N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)$ is non-trivial. So pseudo-equivalence extension does not exist. (still obstruction even in ANR category).

3. Semi-Free Action: Example 1

Theorem

If G has element of order p^{2} (say G is a p-group and $G \neq \mathbb{Z}_{p}^{\oplus k}$), then there is no semi-free G-action on homotopy S^{1} with $T(p, 1)$ as fixed point.

3. Semi-Free Action: Example 2

If $G=\mathbb{Z}_{n}, n$ is not prime power, then $n=n_{1} n_{2}$, with $n_{1}, n_{2}>1$ and coprime. Pick $a, b=1-a$ satisfying

$$
(a, b)=(1,0) \bmod n_{1}, \quad(a, b)=(0,1) \bmod n_{2} .
$$

Then $H=\mathbb{Z}\left[t, t^{-1}\right] /(a t-b)$ satisfies Smith condition.

3. Semi-Free Action: Example 2

If $G=\mathbb{Z}_{n}, n$ is not prime power, then $n=n_{1} n_{2}$, with $n_{1}, n_{2}>1$ and coprime. Pick $a, b=1-a$ satisfying

$$
(a, b)=(1,0) \bmod n_{1}, \quad(a, b)=(0,1) \bmod n_{2} .
$$

Then $H=\mathbb{Z}\left[t, t^{-1}\right] /(a t-b)$ satisfies Smith condition.
$[a t-b]=\left(0,\left[a \mathbb{Z}_{n}\right], 0,0\right)$ in $\left(\right.$ note $\left.\mathbb{Z}_{n}=a \mathbb{Z}_{n} \oplus b \mathbb{Z}_{n}\right)$

$$
K_{1}\left(\mathbb{Z}_{n}\left[t, t^{-1}\right]\right)=K_{1}\left(\mathbb{Z}_{n}\right) \oplus K_{0}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right)
$$

goes to $[H]=\left(0, \partial\left[a \mathbb{Z}_{n}\right], 0,0\right)$ in
$\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\left[t, t^{-1}\right]\right)=\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)$

3. Semi-Free Action: Example 2

If $G=\mathbb{Z}_{n}, n$ is not prime power, then $n=n_{1} n_{2}$, with $n_{1}, n_{2}>1$ and coprime. Pick $a, b=1-a$ satisfying

$$
(a, b)=(1,0) \bmod n_{1}, \quad(a, b)=(0,1) \bmod n_{2} .
$$

Then $H=\mathbb{Z}\left[t, t^{-1}\right] /(a t-b)$ satisfies Smith condition.
$[a t-b]=\left(0,\left[a \mathbb{Z}_{n}\right], 0,0\right)$ in $\left(\right.$ note $\left.\mathbb{Z}_{n}=a \mathbb{Z}_{n} \oplus b \mathbb{Z}_{n}\right)$

$$
K_{1}\left(\mathbb{Z}_{n}\left[t, t^{-1}\right]\right)=K_{1}\left(\mathbb{Z}_{n}\right) \oplus K_{0}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right) \oplus N K_{1}\left(\mathbb{Z}_{n}\right)
$$

goes to $[H]=\left(0, \partial\left[a \mathbb{Z}_{n}\right], 0,0\right)$ in
$\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\left[t, t^{-1}\right]\right)=\tilde{K}_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \oplus N K_{0}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)$

No longer obstruction in ANR category!

3. Semi-Free Action: Example 2

Calculate $\partial\left[a \mathbb{Z}_{n}\right]$ by exact sequence
$\tilde{K}_{0}(\mathbb{Z}) \oplus \tilde{K}_{0}\left(\mathbb{Z}\left[\xi_{n}\right]\right) \rightarrow \tilde{K}_{0}\left(\mathbb{Z}_{n}\right) \xrightarrow{\partial} K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \rightarrow K_{-1}(\mathbb{Z}) \oplus K_{-1}\left(\mathbb{Z}\left[\xi_{n}\right]\right)$.
This is $\left(K_{0}\left(\mathbb{Z}_{n}\right)=\oplus_{i=1}^{k} K_{0}\left(\mathbb{Z}_{p_{i}}^{m_{i}}\right)=\mathbb{Z}^{k}\right.$ for $\left.n=p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}\right)$
$0 \oplus$ finite $\rightarrow \mathbb{Z}^{k} / \mathbb{Z}(1, \ldots, 1) \xrightarrow{\partial} K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \rightarrow 0 \oplus$ torsionfree

3. Semi-Free Action: Example 2

Calculate $\partial\left[a \mathbb{Z}_{n}\right]$ by exact sequence
$\tilde{K}_{0}(\mathbb{Z}) \oplus \tilde{K}_{0}\left(\mathbb{Z}\left[\xi_{n}\right]\right) \rightarrow \tilde{K}_{0}\left(\mathbb{Z}_{n}\right) \xrightarrow{\partial} K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \rightarrow K_{-1}(\mathbb{Z}) \oplus K_{-1}\left(\mathbb{Z}\left[\xi_{n}\right]\right)$.
This is $\left(K_{0}\left(\mathbb{Z}_{n}\right)=\oplus_{i=1}^{k} K_{0}\left(\mathbb{Z}_{p_{i}^{m_{i}}}\right)=\mathbb{Z}^{k}\right.$ for $\left.n=p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}\right)$
$0 \oplus$ finite $\rightarrow \mathbb{Z}^{k} / \mathbb{Z}(1, \ldots, 1) \xrightarrow{\partial} K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \rightarrow 0 \oplus$ torsionfree
∂ is injective. In fact $\tilde{K}_{0}\left(\mathbb{Z}_{n}\right)$ is a direct summand of $K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)$.

3. Semi-Free Action: Example 2

Calculate $\partial\left[a \mathbb{Z}_{n}\right]$ by exact sequence
$\tilde{K}_{0}(\mathbb{Z}) \oplus \tilde{K}_{0}\left(\mathbb{Z}\left[\xi_{n}\right]\right) \rightarrow \tilde{K}_{0}\left(\mathbb{Z}_{n}\right) \xrightarrow{\partial} K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \rightarrow K_{-1}(\mathbb{Z}) \oplus K_{-1}\left(\mathbb{Z}\left[\xi_{n}\right]\right)$.
This is $\left(K_{0}\left(\mathbb{Z}_{n}\right)=\oplus_{i=1}^{k} K_{0}\left(\mathbb{Z}_{p_{i}^{m_{i}}}\right)=\mathbb{Z}^{k}\right.$ for $\left.n=p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}\right)$
$0 \oplus$ finite $\rightarrow \mathbb{Z}^{k} / \mathbb{Z}(1, \ldots, 1) \xrightarrow{\partial} K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) \rightarrow 0 \oplus$ torsionfree
∂ is injective. In fact $\tilde{K}_{0}\left(\mathbb{Z}_{n}\right)$ is a direct summand of $K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right)$.
Take $n_{1}=p_{1}^{m_{1}}, n_{2}=p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$

$$
\begin{aligned}
& \Longrightarrow\left[a \mathbb{Z}_{n}\right]=[1,0, \ldots, 0] \neq 0 \in \tilde{K}_{0}\left(\mathbb{Z}_{n}\right) \\
& \Longrightarrow \partial\left[a \mathbb{Z}_{n}\right] \neq 0 \in K_{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{n}\right]\right) .
\end{aligned}
$$

3. Semi-Free Action: Summary

For $G=\mathbb{Z}_{n}$ acting on homotopy circle:

- If n is not primer power, then we get K_{-1}-obstruction counterexample.
- If p^{2} divides n, then get $N K_{0}$-obstruction counterexample.

Thank You

