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Fixed-Point Theorems for Periodic Transformations.
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THEOREM I(2). Let p be a prime and M a finite dimensional locally
bicompact space which is acyclic mod p. Every homeomorphic transformation
of period p* (a > 0) of M into itself admits at least one fized point.

TueoreM II. The totalily L of fived points which theorem I (1) asserts
to be non-empty, is acyclic modulo p.
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Theorem
G = Zpk acts on Fp-acyclic X = XCis [Fp-acyclic.

H.(X;F,) =0 = H.(X;F,)=0.
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1. Smith Theory

“X is Fp-acyclic — XCis Fp-acyclic” holds for
1. Smith: G = Zp.
2. G is p-group.
3. Any G, semi-free action (Gx = G or e), and p dividing |G|.

Need to divide into two cases:
» Semi-free action: Smith condition must be satisfied.
» General action, |G| is not prime power: Smith condition needs
not be satisfied.
The first was studied by Lowell Jones. The second was studied by
Robert Oliver.



1. Converse of Smith

Theorem [Lowell Jones 1971]
F is Z,-acyclic
— F = X%» for a contractible X with semi-free Z,-action.

Remark Z,-acyclic <= Zp-acyclic for all p|n.

Theorem [Robert Oliver 1975]

For any G such that |G| is not prime power, there is ng, such that
F = X for a contractible X with G-action

<= x(F) =1 mod ng.
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equivalence after forgetting the G-action.
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1. Pseudo-equivalence Extension

Definition A G-map is a pseudo-equivalence if it is a homotopy
equivalence after forgetting the G-action.

F———— Y

add G—cells,\[ >~
g

X

Pseudo-equivalence Extension Problem
Always assume: F = X© (F has trivial G-action), and adding free
G-cells (semi-free), or adding non-fixed G-cells (general).

Jones and Oliver: The case Y is a single point.
Our problem: Y not contractible, especially m = 71 Y non-trivial.
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Oliver and Petrie (1982) studied the general problem, with
isotropies of X — F in a prescribed family. However, they only
conclude quasi-equivalence instead of pseudo-equivalence.
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2. General Action: Pseudo-equivalence Invariant

|G| is not prime power

= There is ng, x(X¢) = 1 mod ng for contractible G-space X.
— For pseudo-equiv g: X = Y, x(X¢) = x(Y¢) mod ng.
= x(X®) mod ng is pseudo-equivalence invariant.

Second = : Apply Oliver to contractible G-space Cone(g).



2. General Action: Pseudo-equivalence Invariant

|G| is not prime power

= There is ng, x(X¢) = 1 mod ng for contractible G-space X.
— For pseudo-equiv g: X = Y, x(X¢) = x(Y¢) mod ng.
= x(X®) mod ng is pseudo-equivalence invariant.

Second = : Apply Oliver to contractible G-space Cone(g).

Remark Pseudo-equivalence has no inverse. To get equivalence
relation, need zig-zaging sequence of pseudo-equivalences

X030 00 .0i—0Y

x(X®) mod n¢ is an invariant in this sense.



2. General Action: Main Theorem

Theorem

Suppose |G| is not prime power, and Y%, YL, ..., Y are
components of Y©. Then there is a subgroup Ny C Z¥, such that
f: F — Y can be extended to a pseudo-equivalence G-map

g: X — Y, with X¢ = F, if and only if

(X(F1) = x(YC), -y x(F) = x(Y) ) € Ny,  Fi=f1(Y°).
Moreover,

ngZK € Ny C {(a;): ng divides Za;}.



2. General Action: Main Theorem

Theorem

Suppose |G| is not prime power, and Y%, YL, ..., Y are
components of Y©. Then there is a subgroup Ny C Z¥, such that
f: F — Y can be extended to a pseudo-equivalence G-map

g: X — Y, with X¢ = F, if and only if

(X(FL) = x(Y°), - x(F) = x(Y2) ) € Ny,  Fi=f1(Y°).

Moreover,
ngZK € Ny C {(a;): ng divides Za;}.

First C: component-wise x(F;) = x(Y:®) mod ng is sufficient.
Second C: global x(F) = x(Y®) mod ng is necessary.



2. General Action: Connected Y©

Ny = ngZ for k =1, i.e., Y G is connected.

Theorem
Suppose |G| is not prime power, and Y@ is connected. Then

f: F — Y can be extended to a pseudo-equivalence G-map
g: X = Y, with X¢ = F, if and only if x(F) = x(Y¢) mod n.



2. General Action: Connected Y©

Ny = ngZ for k =1, i.e., Y G is connected.

Theorem

Suppose |G| is not prime power, and Y@ is connected. Then

f: F — Y can be extended to a pseudo-equivalence G-map

g: X = Y, with X¢ = F, if and only if x(F) = x(Y¢) mod n.

Corollary

Suppose |G| is not prime power, and Y ¢ is non-empty and
connected. Then F = X© for some X pseudo-equivalent to Y (no
direct map needed) if and only if x(F) = x(Y¢) mod ng.
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2. General Action: Application

Corollary
If |G| is not prime power, Y is connected, x(Y) =0 mod ng, then
G acts on a homotopy Y with no fixed points.

G-action on X, induces homomorphism G — Out(rw), 7 = m1 X.
If the action has fixed point, then the homomorphism lifts to
G — Aut(m).

Problem: If G — Out() lifts to Aut(w), does the action have
fixed point?

The corollary provides plenty of examples of G-action on homotopy
Y with and without fixed points.

Theorem

Suppose |G| is not prime power. Then there is an aspherical
manifold M with centerless fundamental group, such that

G — Out(n) lifts to Aut(m), and the action has no fixed point.



2. General Action: Proof

Need to show
1. Ny = {(X(XiG) — X(YIG))f.‘:l: pseudo-equiv X — Y'} is an
abelian subgroup.

2. Component-wise Euler condition x(F;) = x(Y,¢) mod ng
=—> pseudo-equivalence extension exists.
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2. General Action: Proof

Need to show
1. Ny = {(X(XiG) — X(YIG))f.‘:l: pseudo-equiv X — Y'} is an
abelian subgroup.

2. Component-wise Euler condition x(F;) = x(Y,¢) mod ng
=—> pseudo-equivalence extension exists.

The first is by general constructions, which also shows that Ny is
functorial. The second is by the following steps:

» Reduce to extending f: F — Y, Y connected and trivial
action.

» Partition of Euler number: If F £ () and x(F) = x(Y) mod n,
then by changing F and f by homotopy, we have
x(f~(c)) = 1 mod n for each cell o of Y.

» Oliver's argument is relative, allowing induction on cells.

» Treat F = () by the special case Y = S!.
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2. General Action: F =( and Y = St

Corollary If |G| is not prime power, then there is a G-space
X ~ S, such that X¢ = (.

Let V = ker(RG — R) C RG, and Z = unit sphere of &k V.

—_— _—
D D

N\

We have D/OD =p Z and G-map of degree 1+ |G/Np|
Z—ZVe G(D/OD) — Z.
Repeat and modify for all P;, get G-map ¢: Z — Z of degree
1+ a1|G/Np,| + -+ an|G/Np,| = 0.

Mapping torus X = T(¢) — S is ~
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2. General Action: Local vs Global Euler

ngZk c Ny C {(a;) € Z¥: n¢ divides > a;}.

Ny = Z* (no Euler condition) if n¢ = 1. By Oliver (1975), this
means G is not of the form

P<H<G, |P|and|G/H| prime power, and H/P cyclic.

Theorem
Suppose ng = 0, which means

P < G, |P] prime power, and G/P cyclic.

Let I on Y be the lifting of G on Y. If the connected components
YlG, cen YkG of Y© satisfy

1. Induced splittings G 2y T are not m-conjugate.

2. m Y,-G — m1Y are injective.
Then Ny = ncZk.



2. General Action: Local vs Global Euler

Theorem [Oliver and Petrie 1982]

Consider G = D,, the dihedral group of order 2p (p an odd
prime). Consider f: F — Y, Y simply connected.

Let ch”, e Y,C” be connected components of Y. Then f has
pseudo-equivalence extension if and only if

X(FOFHYP)) = x(YE N Y ) for all .

Y Dr
x-trade off<

Y S




3. Semi-free Action: Pseudo-equivalence Invariant

For semi-free action, pseudo-equivalence g: X — Y implies Smith
condition

H. (X Fpm) = H(YC; Fprr), p| |G|

So H*(—G; [Fp7) is pseudo-equivalence invariant, not as easy to use
as Euler number.



3. Semi-free Action: Main Theorem

Theorem (fixed target)

A map f: F — Y (no G-action) has pseudo-equivalent extension
g: X — Y, with semi-free G-space X and F = X©, if and only if

1. Smith: H.(F;Fpm) = H(Y;Fpm),
2. K-theory: [C(f)] € Ko(Z[r x G]) vanishes.
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3. Semi-free Action: Main Theorem

Theorem (fixed target)

A map f: F — Y (no G-action) has pseudo-equivalent extension
g: X — Y, with semi-free G-space X and F = X©, if and only if

1. Smith: H.(F;Fpm) = H(Y;Fpm),
2. K-theory: [C(f)] € Ko(Z[r x G]) vanishes.

Remark C(f) is Zn-chain complex, regarded as Z[r x G]-chain

complex by trivial G-action. Then Smith condition implies C(f)
has finite Z[m x G]-projective resolution.

Theorem (semi-free target)

Consider G acting semi-freely on' Y and f: F — Y© C Y, exists
exists if and only if Smith condition is satisfied and K-theory
obstruction [C(f)] € Ko(Z[l']) vanishes.
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Same as Wall (1965) construction for finiteness.
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0 — Cu(f) = Cu(f™) = Ce1(X", F) — 0.



3. Semi-free Action: Proof

Same as Wall (1965) construction for finiteness.

Attach free G-cells to F to get isomorphism on 71 and then
inductively kill H;(f;Z~r). Get f": X" — Y, n>dimF,dimY,
such that H;(f"; Zr) = 0 for i < n. Get exact sequence

0 — Cu(f) = C(f") = C1(X™, F) = 0.
The obstruction is the “stable Z(m x G)-freeness” of
Hpi1(f™; Zm). Since Co(X", F) is Z(mw x G)-free, the obstruction is

E[Hny1 (7 Zm)] = [C(F")] = [C(F)] € Ko(Z[m x G)).
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3. Semi-Free Action: Example

Y =St 7w ={t': i € Z}. F is double mapping torus T(a, b) of
maps S — S9 of deg a, b

‘ Sd —f)

For G = Z,, we want to extend f: F = T(a,b) — Y to semi-free
pseudo-equivalence.
The only non-trivial Zm-homology of f is

51

H = Hy(f; Z[t, t 7)) = Z[t, t 7] /(at — b).



3. Semi-Free Action: Example

The pullback diagrams

2Lt 7] —— Hl[e 1Y) z[z,] —— L

| L

Z[t, t7Y  —— Zp[t, t7Y] 7z —

n
induce O between Bass-Heller-Swan decompositions
Ki(Zn[t, t 7)) = Ki(Zy) © Ko(Zn) © NKL(Z,,) & NKL(Z,)

10
Ko(ZIZa][t, tY]) = Ko(Z[Zs]) ® K_1(Z[Zn]) ® NKo(Z[Z1)) & NKo(Z[Zn))



3. Semi-Free Action: Example 1

For G =Z%Z,, n= pk, p prime, a=p, b=1, we have
H = Z[t, t7]/(pt — 1), Smith condition satisfied.
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For G =Z%Z,, n= pk, p prime, a = p, b=1, we have
H = Z[t, t7]/(pt — 1), Smith condition satisfied.

[pt —1] = ([p—1],0,0,[(p — 1)~*p]) in
Ki(Znlt, t71]) = Ki(Zn) ® Ko(Zn) ® NK1(Zn) ® NK1(Zn),
goes to [H] = (0,0,0,0[(p — 1)"'p]) in

Ro(Z[Zal[t, t*]) = Ko(ZIZn]) K1 (ZIZn]) O NKo(ZIZ 4] ) B NKo(Z[Zy))

» For k=1, [(p—1)"1p] € NK1(Z,) already vanishes. So
pseudo-equivalence extension exists.

» For k > 1, d[(p — 1)"tp] € NKo(Z[Zn]) is non-trivial. So
pseudo-equivalence extension does not exist.
(still obstruction even in ANR category).



3. Semi-Free Action: Example 1

Theorem

If G has element of order p? (say G is a p-group and G # Z;‘fk),
then there is no semi-free G-action on homotopy S! with T(p, 1)
as fixed point.
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If G =7Z,, nis not prime power, then n = nyinp, with ny,ny > 1
and coprime. Pick a, b = 1 — a satisfying

(a,b) =(1,0) mod n1, (a,b)=(0,1) mod ny.

Then H = Z[t, t~1]/(at — b) satisfies Smith condition.
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If G =7Z,, nis not prime power, then n = nyinp, with ny,ny > 1
and coprime. Pick a, b = 1 — a satisfying

(a,b) =(1,0) mod n1, (a,b)=(0,1) mod ny.
Then H = Z[t, t~1]/(at — b) satisfies Smith condition.
[at — b] = (0,[2Z,],0,0) in (note Z, = aZ, ® bZ,)
Ki(Zn[t, t7Y]) = Ki(Zn) ® Ko(Zy) ® NK1(Zp) ® NK1(Z,),
goes to [H] = (0,0[aZ,],0,0) in

Ko(Z[Zn][t, t7Y]) = Ko(Z[Zn))®K_1(Z[Z4))®NKo(Z[Z))®NKo(Z[Zn])

No longer obstruction in ANR category!



3. Semi-Free Action: Example 2

Calculate d[aZ,| by exact sequence
Ro(Z)@Ro(Z[En]) — Ro(Zn) & K A(Z[Za]) — K 1(Z)BK 1(ZIES)).

This is (Ko(Zn) = GBf‘ZlKo(Zp’(n,-) = Z* for n=p{™...p%)

0@ finite — Z¥/Z(1,...,1) % K_1(Z[Z,]) — 0 @ torsionfree



3. Semi-Free Action: Example 2

Calculate d[aZ,| by exact sequence
- - - o
Ko(Z)®Ko(Z[En]) = Ko(Zn) = K-1(Z[Zn]) = K-1(Z)BK-1(Z[En])-
This is (Ko(Zy) = GBf‘:lKo(Zp_m,-) = Z* for n=p{™...p%)
0@ finite — Z¥/Z(1,...,1) % K_1(Z[Z,]) — 0 @ torsionfree

d is injective. In fact Ko(Z,) is a direct summand of K_1(Z[Z,]).



3. Semi-Free Action: Example 2

Calculate d[aZ,| by exact sequence

Ro(2)®Ro(ZlEr]) = Ro(Zn) & K 1(Z[Z4]) = K 1(2)BK 1(ZIES)).

This is (Ko(Zn) = GBf‘:lKo(Zp’_m,-) = Z* for n=p{™...p%)

0@ finite — Z¥/Z(1,...,1) % K_1(Z[Z,]) — 0 @ torsionfree
d is injective. In fact Ko(Z,) is a direct summand of K_1(Z[Z,]).

Take ny = pi™, np = py=...po*
— [aZ,] =[1,0,...,0] # 0 € Ko(Zn)
= 0J[aZ,] # 0 € K_1(Z[Z,)).



3. Semi-Free Action: Summary

For G = Z, acting on homotopy circle:

» If nis not primer power, then we get K_;-obstruction
counterexample.

» If p? divides n, then get NKg-obstruction counterexample.



Thank You



