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History

Belinson-Drinfeld;

Lurie, Ayala-Francis;

Kupers-Miller, Knudsen, ...
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little n-disk operad

The operad Dn has the following data:

Spaces Dn(k) = {e1, · · · , ek | conditions }.
Each ei : Dn → Dn is in the form of ei (v) = av + b for a > 0, b ∈ Dn;
The images of ei ’s are disjoint;

Struture maps γ : Dn(k)×Dn(j1)× · · · ×Dn(jk)→ Dn(j1 + · · ·+ jk).
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G -operad

G : finite group. V : n-dimensional orthogonal G -representation.

A G -operad in Top is an operad such that the spaces are G -spaces and
structure maps are G -equivariant. Equivalently, it is an operad in TopG .

Notation

GTop is the category of G -spaces and non-equivariant maps;

TopG is the category of G -spaces and equivariant maps;

GTop is enriched in TopG .

Example

1 Let X be an object in a TopG -enriched category (C,⊗), then
End⊗X (k) = HomC(X⊗k ,X ) is a G -operad.

2 Replacing the disk Dn by the unit disk in V , we get the little V -disk
operad DV (Guillou-May).
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En-algebra

The (reduced) operad Dn is associated with a monad Dn : Top∗ → Top∗:

DnX =
∐
k

Dn(k)×Σk X
k/ ∼

An algebra over Dn is space A with structure maps

λ : Dn(k)×Σk A
k → A

that satisfies the unital, associativity and Σ-equivariant diagrams.

Equivalently, it is an algebra over Dn with structure maps

λ : DnA→ A.

Such an algebra is called an En-algebra.
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En-algebra

Example

ΩnX is an En-algebra.

Dn(ΩnX )
s(ΩnX )−→ ΩnΣn(ΩnX )

counit−→ ΩnX .
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En-algebra

One alternative way to see an En-algebra A:

Let Diskfr
n be the symmetric monoidal topological category with

obj : [k] for k ≥ 0;

mor : Embfr(tkD
n,tlD

n);

⊗ : [k]⊗ [l ] ∼= [k + l ].

Then A is a symmetric monoidal topological functor Diskfr
n → Top.
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factorization homology for framed manifold

Factorization homology of framed manifolds with coefficient A is the symmetric
monoidal topological left Kan extension:

Diskfr
n C

Mfldfr
n

A

∫
− A
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the TopG -category MfldfrV
n

Definition

A smooth G -manifold is V -framed if there is G -vector bundle isomorphism

TM ∼= M × V .

Example

1 V is V -framed;

2 G = C2. Let σ be the sign representation. Then Sσ is σ-framed.

3 G = Cp. Then S1
rot is R-framed.

4 G = Cp. Let λ be the 2-dimensional rotation representation. Then
S1
rot × R is both λ- and R2-framed.
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Construction

Following Kupers-Miller, we construct a symmetric monoidal TopG -category
(Mfld

frV
n ,t) of V -framed manifolds and V -framed embeddings such that

EmbfrV (V ,V ) ' ∗.
(Idea: Use Steiner paths.)

Endomorphism operad D frV
V and monad D

frV
V . (D frV

V is equivalent to DV .)
Moreover, any manifold M gives rise to a functor

D
frV
M : TopG → TopG

X 7→
∐

k≥0 EmbfrV (tkV ,M)×Σk X
k/ ∼ .

D
frV
M X is the V -fattened configuration space on M with based labels in X .

Proposition

Evaluation at 0 gives a G -homotopy equivalence

ev0 : D
frV
M X →

∐
k

PConf(M, k)×Σk X
k/ ∼ .
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structures

D
frV
M (X ) =

∐
k≥0

EmbfrV (tkV ,M)×Σk X
k/ ∼ .

Composition D
frV
M ◦D

frV
V → D

frV
M ; D

frV
V ◦D

frV
V → D

frV
V ;

Unit Id→ D
frV
V from the element id : V → V ;

Take a (non-degenerately based) D
frV
V -algebra A in TopG ,

Struture map D
frV
V (A)→ A.

We have a simplicial G -space:

B•(D
frV
M ,D

frV
V ,A) = D

frV
M (DfrV

V )•(A).

Definition

The factorization homology of M with coefficient A is∫
M

A := B(DfrV
M ,D

frV
V ,A).
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structure

∫
M

A := B(DfrV
M ,D

frV
V ,A).

The bar construction is a model for configuration spaces with EV -summable
labels (Salvatore).
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scanning map

The scanning maps on configuration spaces have been studied by McDuff,
Segal, Bödigheimer, Manthorpe-Tillmann, ...

It maps a configuration of points on M to a section of TM. Intuitivly, it is
the Pontryagin-Thom collapse map.

Figure: illustration of the scanning map by Church
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It maps a configuration of points on M to a section of TM.

In our V -framed case, it takes the form:

Construction

s : D
frV
M (X )→ Map∗(M

+,ΣVX ).

For labelled configuration space on a G -manifold M, the following theorem
has been proved geometricly: (for M = V , it is the equivariant recognition
priciple by Guillou-May)

Theorem (Rourke-Sanderson)

The scanning map is a G -weak equivalence if X is G -connected.
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s : D
frV
M (X )→ Map∗(M

+,ΣVX ).

The scanning map is simplicial:

s : D
frV
M (DfrV

V )•(X )→ Map∗(M
+,ΣV (DfrV

V )•X ).

So it realizes to∫
M

A = D
frV
M (DfrV

V )•(A)→ |Map∗(M
+,ΣV (DfrV

V )•A)|

→ Map∗(M
+, |ΣV (DfrV

V )•A|) = Map∗(M
+,BVA).
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Nonabelian Poincaré duality

Theorem (Z.)

Let M be a V -framed manifold and A be a D
frV
V -algebra in TopG .

Assume that A is non-degenerately based and G -connected.
Then the scanning map induces a G -weak equivalence:∫

M

A→ Map∗(M
+,BVA).
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Application: baby equivariant Poincaré duality

Let A be a discrete Z[G ]-module. Then it is a G -E∞-space.∫
M

A = M ⊗ A.

The equivariant Dold-Thom theorem:

Theorem (Lima-Filho, Santos)

πG
F(X ⊗ A) ∼= H̃G

F(X ,A).

Corollary

For V -framed manifold M, there is isomorphism:

H̃G
F(M,A) ∼= HV−F

G (M+,A).
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Application: factorization homology on Thom spectra

Theorem (Horev-Klang-Z.)

Let A be the Thom spectrum of an EV+1-map ΩV+1X → Pic(SpG ) such that
X is suitably connected. Then∫

SV×R
A ' A ∧ ΩX+.

Take G = C2, σ: the sign representation, ρ ∼= σ + 1: the regular representation.

Theorem (Behrens-Wilson)

The Eilenberg-MacLane spectrum HF2 is equivariantly the Thom spectrum of a
ρ-fold loop map ΩρSρ+1 → BC2O.

Corollary

THR(HF2) '
∫
Sσ

HF2 ' HF2 ∧ (ΩSρ+1)+.
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Questions:

As a functor for M: can we get a better understood equivariant Poincaré
duality theorem?

As a functor for A: can we get useful invariants for algebras with partial
norms?

For a ring spectrum R, can we identify R-orientable manifold and
ER−ori
n -algebra?

We need to study general tangential structures.
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Tangential structure

BGO(n): the classifying space for G -equivariant n-dimensional vector
bundle.

Tangential structure: a map θ : B → BGO(n).

θ-framing on M: a G -bundle map φ : TM → θ∗γ, where γ is the universal
bundle on BGO(n).

Equivalently,

B

M BGO(n)

θ

τ

τB

⇑
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E θV -algebra

Let θ be a tangential structure such that V is θ-framed.
We can identify Dθ

V with a semidirect product of DV (Salvatore-Wahl):

Proposition

There is an equivalence of G -operads: Dθ
V ' DV o (Embθ(V ,V )).

(Here, Embθ(V ,V ) is a group object in TopG . It is equivalent to ΩB.)

In terms of algebras:

(TopG )Π ∼= TopΠoαG .

C [TopG ] ∼= (C o G)[Top].

(C o Π)[TopG ] ∼= C [TopΠoαG ] ∼= C o (Π oα G)[Top].
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Thank you!
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