E_V -algebra	Factorization homology	General tangential structure

Equivariant Factorization Homology and Nonablian Poincaré Duality

Foling Zou

University of Chicago

IWoAT Shanghai August 19, 2019

Introduction •	E _V -algebra 00000	Nonabelian Poincaré duality 000000	

History

- Belinson-Drinfeld;
- Lurie, Ayala-Francis;
- Kupers-Miller, Knudsen, …

E _V -algebra ●0000	Nonabelian Poincaré duality 000000	

little n-disk operad

The operad \mathcal{D}_n has the following data:

- Spaces $\mathcal{D}_n(k) = \{e_1, \cdots, e_k | \text{ conditions } \}.$
 - Each $e_i: D^n \to D^n$ is in the form of $e_i(\mathbf{v}) = a\mathbf{v} + \mathbf{b}$ for $a > 0, \mathbf{b} \in D^n$;
 - The images of e_i's are disjoint;

Struture maps $\gamma : \mathscr{D}_n(k) \times \mathscr{D}_n(j_1) \times \cdots \times \mathscr{D}_n(j_k) \to \mathscr{D}_n(j_1 + \cdots + j_k).$

E _V -algebra 0●000	Nonabelian Poincaré duality 000000	

G-operad

- G: finite group. V: n-dimensional orthogonal G-representation.
- A G-operad in Top is an operad such that the spaces are G-spaces and structure maps are G-equivariant. Equivalently, it is an operad in Top^G.

Notation

- GTop is the category of G-spaces and non-equivariant maps;
- Top^G is the category of G-spaces and equivariant maps;
- *G*Top is enriched in Top^{*G*}.

Example

- Let X be an object in a Top^G-enriched category (C, \otimes), then End[⊗]_X(k) = Hom_C(X^{⊗k}, X) is a G-operad.
- Replacing the disk Dⁿ by the unit disk in V, we get the little V-disk operad D_V (Guillou-May).

	E _V -algebra 00●00	Nonabelian Poincaré duality 000000	
<i>E_n-algebra</i>			

• The (reduced) operad \mathscr{D}_n is associated with a monad $D_n : Top_* \to Top_*$:

$$\mathrm{D}_n X = \coprod_k \mathscr{D}_n(k) \times_{\Sigma_k} X^k / \sim$$

• An algebra over \mathcal{D}_n is space A with structure maps

$$\lambda: \mathscr{D}_n(k) \times_{\Sigma_k} A^k \to A$$

that satisfies the unital, associativity and Σ -equivariant diagrams.

• Equivalently, it is an algebra over D_n with structure maps

$$\lambda : D_n A \to A.$$

Such an algebra is called an E_n -algebra.

E_V -algebra	Factorization homology	General tangential structure
00000		

E_n -algebra

Example

 $\Omega^n X$ is an E_n -algebra.

$$D_n(\Omega^n X) \stackrel{s(\Omega^n X)}{\longrightarrow} \Omega^n \Sigma^n(\Omega^n X) \stackrel{\text{counit}}{\longrightarrow} \Omega^n X.$$

	E _V -algebra 0000●	Nonabelian Poincaré duality 000000	
E_n -algebra			

One alternative way to see an E_n -algebra A:

• Let $\mathrm{Disk}_n^{\mathrm{fr}}$ be the symmetric monoidal topological category with

- obj : [k] for $k \ge 0$;
- mor : $\operatorname{Emb}^{\operatorname{fr}}(\sqcup_k D^n, \sqcup_l D^n);$

$$\otimes : [k] \otimes [l] \cong [k+l].$$

• Then A is a symmetric monoidal topological functor $\operatorname{Disk}_n^{\operatorname{fr}} \to \operatorname{Top}$.

E_V -algebra	Factorization homology	General tangential structure
	00000	

factorization homology for framed manifold

Factorization homology of framed manifolds with coefficient A is the symmetric monoidal topological left Kan extension:

E_V -algebra	Factorization homology	General tangential structure
	0000	

the Top^{G} -category $\operatorname{Mfld}_{n}^{\operatorname{fr}_{V}}$

Definition

A smooth G-manifold is V-framed if there is G-vector bundle isomorphism

 $\mathrm{T}M\cong M\times V.$

Example

- V is V-framed;
- **2** $G = C_2$. Let σ be the sign representation. Then S^{σ} is σ -framed.
- **3** $G = C_p$. Then S_{rot}^1 is \mathbb{R} -framed.
- $\mathcal{G} = \mathcal{C}_{\rho}$. Let λ be the 2-dimensional rotation representation. Then $S^1_{rot} \times \mathbb{R}$ is both λ and \mathbb{R}^2 -framed.

Nonabelian Poincaré duality 000000 General tangential structure 0000

Construction

Following Kupers-Miller, we construct a symmetric monoidal Top^{G} -category $(\operatorname{Mfld}_{n}^{\operatorname{fr}_{V}}, \sqcup)$ of V-framed manifolds and V-framed embeddings such that $\operatorname{Emb}^{\operatorname{fr}_{V}}(V, V) \simeq *$. (Idea: Use Steiner paths.)

- Endomorphism operad $\mathscr{D}_{V}^{\mathrm{fr}_{V}}$ and monad $\mathrm{D}_{V}^{\mathrm{fr}_{V}}$. ($\mathscr{D}_{V}^{\mathrm{fr}_{V}}$ is equivalent to \mathscr{D}_{V} .)
- Moreover, any manifold M gives rise to a functor

$$\begin{array}{rcl} \mathrm{D}^{\mathrm{fr}_V}_M: & \mathrm{Top}^G & \to & \mathrm{Top}^G \\ & & & & & & & \\ & & X & \mapsto & & & & \\ & & & & & & & \\ & & & X_{k\geq 0} \operatorname{Emb}^{\mathrm{fr}_V}(\sqcup_k V, M) \times_{\Sigma_k} X^k / \sim . \end{array}$$

• $D_M^{\text{fr}_V}X$ is the V-fattened configuration space on M with based labels in X.

Proposition

Evaluation at 0 gives a G-homotopy equivalence

$$ev_0: \mathrm{D}_M^{\mathrm{fr}_V}X \to \coprod_k \mathrm{PConf}(M,k) imes_{\Sigma_k} X^k / \sim.$$

E _V -algebra 00000	Factorization homology 000●0	Nonabelian Poincaré duality 000000	

structures

$$\mathrm{D}_M^{\mathrm{fr}_V}(X) = \prod_{k \geq 0} \mathrm{Emb}^{\mathrm{fr}_V}(\sqcup_k V, M) \times_{\Sigma_k} X^k / \sim .$$

• Composition $D_M^{\mathrm{fr}_V} \circ D_V^{\mathrm{fr}_V} \to D_M^{\mathrm{fr}_V}$; $D_V^{\mathrm{fr}_V} \circ D_V^{\mathrm{fr}_V} \to D_V^{\mathrm{fr}_V}$;

• Unit $\operatorname{Id} \to \operatorname{D}_V^{\operatorname{fr}_V}$ from the element $\operatorname{id} : V \to V$;

Take a (non-degenerately based) $D_V^{fr_V}$ -algebra A in Top^G ,

• Struture map $D_V^{\mathrm{fr}_V}(A) \to A$.

We have a simplicial G-space:

$$\mathbf{B}_{\bullet}(\mathrm{D}_{M}^{\mathrm{fr}_{V}},\mathrm{D}_{V}^{\mathrm{fr}_{V}},A)=\mathrm{D}_{M}^{\mathrm{fr}_{V}}(\mathrm{D}_{V}^{\mathrm{fr}_{V}})^{\bullet}(A).$$

Definition

The factorization homology of M with coefficient A is

$$\int_{M} A := \mathbf{B}(\mathbf{D}_{M}^{\mathrm{fr}_{V}}, \mathbf{D}_{V}^{\mathrm{fr}_{V}}, A).$$

E _V -algebra 00000	Factorization homology 0000●	Nonabelian Poincaré duality 000000	

structure

$$\int_{M} A := \mathbf{B}(\mathbf{D}_{M}^{\mathrm{fr}_{V}}, \mathbf{D}_{V}^{\mathrm{fr}_{V}}, A).$$

The bar construction is a model for configuration spaces with E_V -summable labels (Salvatore).

E _V -algebra 00000	Nonabelian Poincaré duality ●00000	

scanning map

- The scanning maps on configuration spaces have been studied by McDuff, Segal, Bödigheimer, Manthorpe-Tillmann, ...
- It maps a configuration of points on M to a section of TM. Intuitivly, it is the Pontryagin-Thom collapse map.

Figure: illustration of the scanning map by Church

E _V -algebra 00000	Nonabelian Poincaré duality 0●0000	

- It maps a configuration of points on M to a section of TM.
- In our V-framed case, it takes the form:

Construction

$$s: \mathrm{D}^{\mathrm{fr}_V}_M(X) \to \mathrm{Map}_*(M^+, \Sigma^V X).$$

• For labelled configuration space on a *G*-manifold *M*, the following theorem has been proved geometricly: (for M = V, it is the equivariant recognition priciple by Guillou-May)

Theorem (Rourke-Sanderson)

The scanning map is a G-weak equivalence if X is G-connected.

E _V -algebra 00000	Nonabelian Poincaré duality 00●000	

$$s: \mathrm{D}^{\mathrm{fr}_V}_M(X) \to \mathrm{Map}_*(M^+, \Sigma^V X).$$

The scanning map is simplicial:

$$s: \mathrm{D}^{\mathrm{fr}_V}_M(\mathrm{D}^{\mathrm{fr}_V}_V)^{ullet}(X) o \mathrm{Map}_*(M^+, \Sigma^V(\mathrm{D}^{\mathrm{fr}_V}_V)^{ullet}X).$$

So it realizes to

$$\begin{split} \int_{M} &A = \mathrm{D}_{M}^{\mathrm{fr}_{V}}(\mathrm{D}_{V}^{\mathrm{fr}_{V}})^{\bullet}(A) \to |\mathrm{Map}_{*}(M^{+}, \Sigma^{V}(\mathrm{D}_{V}^{\mathrm{fr}_{V}})^{\bullet}A)| \\ & \to \mathrm{Map}_{*}(M^{+}, |\Sigma^{V}(\mathrm{D}_{V}^{\mathrm{fr}_{V}})^{\bullet}A|) = \mathrm{Map}_{*}(M^{+}, \mathbf{B}^{V}A). \end{split}$$

duction E_V-algebra 00000 Factorization homology

Nonabelian Poincaré duality

General tangential structure 0000

Nonabelian Poincaré duality

Theorem (Z.)

Let *M* be a *V*-framed manifold and *A* be a D_V^{frv} -algebra in Top^G . Assume that *A* is non-degenerately based and *G*-connected. Then the scanning map induces a *G*-weak equivalence:

$$\int_{M} A \to \operatorname{Map}_{*}(M^{+}, \mathbf{B}^{V}A).$$

Application: baby equivariant Poincaré duality

Let A be a discrete $\mathbb{Z}[G]$ -module. Then it is a G- E_{∞} -space.

$$\int_M A = M \otimes A.$$

The equivariant Dold-Thom theorem:

Theorem (Lima-Filho, Santos)

$$\pi^{G}_{\bigstar}(X\otimes A)\cong \tilde{\mathrm{H}}^{G}_{\bigstar}(X,\underline{A}).$$

Corollary

For V-framed manifold M, there is isomorphism:

$$\tilde{\mathrm{H}}^{G}_{\bigstar}(M,\underline{A}) \cong \mathrm{H}^{V-\bigstar}_{G}(M^{+},\underline{A}).$$

General tangential structure 0000

Application: factorization homology on Thom spectra

Theorem (Horev-Klang-Z.)

Let A be the Thom spectrum of an E_{V+1} -map $\Omega^{V+1}X \to \operatorname{Pic}(\operatorname{Sp}^{G})$ such that X is suitably connected. Then

$$\int_{S^V\times\mathbb{R}}A\simeq A\wedge\Omega X_+.$$

Take $G = C_2$, σ : the sign representation, $\rho \cong \sigma + 1$: the regular representation.

Theorem (Behrens-Wilson)

The Eilenberg-MacLane spectrum $\operatorname{H}\mathbb{F}_2$ is equivariantly the Thom spectrum of a ρ -fold loop map $\Omega^{\rho}S^{\rho+1} \to B_{C_2}O$.

Corollary

$$\mathrm{THR}(\mathrm{H}\underline{\mathbb{F}_{2}})\simeq\int_{S^{\sigma}}\mathrm{H}\underline{\mathbb{F}_{2}}\simeq\mathrm{H}\underline{\mathbb{F}_{2}}\wedge(\Omega S^{\rho+1})_{+}.$$

E _V -algebra 00000	Nonabelian Poincaré duality 000000	General tangential structure •000

Questions:

- As a functor for M: can we get a better understood equivariant Poincaré duality theorem?
- As a functor for A: can we get useful invariants for algebras with partial norms?
- For a ring spectrum R, can we identify R-orientable manifold and $E_n^{R-\text{ori}}$ -algebra?
- We need to study general tangential structures.

E _V -algebra 00000	Nonabelian Poincaré duality 000000	General tangential structure ○●○○

Tangential structure

- B_GO(n): the classifying space for G-equivariant n-dimensional vector bundle.
- Tangential structure: a map $\theta : B \to B_G O(n)$.
- θ -framing on M: a G-bundle map ϕ : $TM \to \theta^* \gamma$, where γ is the universal bundle on $B_GO(n)$.
- Equivalently,

	E _V -algebra 00000	Nonabelian Poincaré duality 000000	General tangential structure ○○●○
E_{V}^{θ} -algebra			

Let θ be a tangential structure such that V is θ -framed. We can identify \mathscr{D}_V^{θ} with a semidirect product of \mathscr{D}_V (Salvatore-Wahl):

Proposition

There is an equivalence of G-operads: $\mathscr{D}_V^{\theta} \simeq \mathscr{D}_V \rtimes (\operatorname{Emb}^{\theta}(V, V)).$ (Here, $\operatorname{Emb}^{\theta}(V, V)$ is a group object in Top^G . It is equivalent to ΩB .)

In terms of algebras:

$$\begin{split} (\operatorname{Top}^{G})^{\Pi} &\cong \operatorname{Top}^{\Pi \rtimes_{\alpha} G}. \\ & \mathscr{C}[\operatorname{Top}^{G}] \cong (\mathscr{C} \rtimes G)[\operatorname{Top}]. \\ (\mathscr{C} \rtimes \Pi)[\operatorname{Top}^{G}] \cong \mathscr{C}[\operatorname{Top}^{\Pi \rtimes_{\alpha} G}] \cong \mathscr{C} \rtimes (\Pi \rtimes_{\alpha} G)[\operatorname{Top}] \end{split}$$

E_V -algebra	Factorization homology	General tangential structure
		0000

Thank you!