Talk 5, 6 Basics of Spectra

Hana Jia Kong

The University of Chicago

July 19, 2021

```
"The first category of spectra"
```

 (Fraudenthal's suspension theorem) Let Y be (n-1)-connected space Then $[X,Y] \rightarrow [X,ZY]$ is iso if dim (X) < 2n-1, and surjection if dim (X)=2n-1. • SW category (Spanier–Whitehead, 1953): • objects: pointed CW - cplx• morphisms: $Hom(X, Y) := \underbrace{\lim_{q \to 0} [\Sigma^{q} X, \Sigma^{q} Y]}$ More generally, we can include the non-connective objects: objects: (X, n) morphisms: Hom ((X,n), (Y,m)) := (im ∑Z^{q+n} X, Z^{q+m}Y]
Pros:

Convenient for duality
Triangulated category

Cons:

Pont have all coproducts Ho(Top*) → SW doesn't preserve coproducts.

Recall: how did spectra arise

• Roughly speaking, a spectrum consists of the following data:

• They represent cohomology theories.

Why spectra

- Spectra and cohomology theories they are not equivalent. There exist "hyperphantom maps": f = E → F map of spectra s.t.
 D f d D
 E) f induces D on cohomology theories.
- The category has point-set models to record the geometric data.
- Has good structures after passing to the homotopy theory.

Multiplicative enhancement

Multiplicative cohomology theories: In many examples, we have Eⁿ(x) O Ê^m(Y) → Ê^{m+n}(XAY)
cup product
tensor of vector bundles (KU)
cartesian product of manifolds (MU)
In view of Brown's theorem:

$$[X, En] \otimes [Y, Em] \longrightarrow [X \land X, En \land Em] \xrightarrow{\text{decay}} [X, En \land Em]$$
$$\xrightarrow{\text{Mn+m}} [X, En+m]$$

15-0

Towards a good smash product

- Want a good symmetric monoidal category of spectra.
- (Aside) Symmetric monoidal category (C, ⊗, U):
 Tensor: Ø: L×L→L
 Unit: U EL
 Unit: U EL
 Unital & associative & commutactive diagrams.
 Closed symmetric monoidal: Home (A®B, C) = Home (A, Home (B:C))
 A naive try: (X ∧ Y)_n : = X_n ∧ Y_n problem : str. map hand to define
 Adams' "handcrafted" ∧: Commutative & associative up to homotopy
 Ho(S): closed sym monoical Category.

An obstacle: Lewis' theorem

Theorem (Lewis, 1990)

There is no symmetric monoidal category (S, \wedge, U) of spectra with the following properties:

- There exists a lax monoidal adjunction $\Sigma^{\infty} : Top_* \leftrightarrows S : \Omega^{\infty}$.
- The canonical map $\Sigma^{\infty}S^0 \to U$ is an isomorphism.
- Let Q be the stabilization functor $QX := \operatorname{colim}_n \Omega^n \Sigma^n(X)$. There is a natural weak homotopy equivalence f:

A sketch proof of Lewis' theorem

i) Adjunction :
$$\Sigma^{\infty} + \Lambda^{\infty}$$

z) $z^{\infty} S^{\circ}$ is the unit
3) $\Lambda^{\infty} \Sigma^{\infty} \times \xrightarrow{c} Q X$

Sketch proof:

• $z^{\infty}S^{\circ}$ is the unit => $z^{\infty}S^{\circ}$ is a comm. monoid.

• \mathcal{N}^{∞} [ax sym unoidal => $\mathcal{N}^{\infty} \mathbb{Z}^{\infty} \mathbb{S}^{\circ}$ is a comm. monoid.

•
$$\mathcal{N}^{\infty} \mathcal{Z}^{\infty} S^{\circ} \cong Q S^{\circ} \Longrightarrow Q S^{\circ}$$
 is comm, monoid
Moore 's thim
 $Q S^{\circ} \subseteq T H A_{a}$ contradiction !

Compromises: Different models

- S-modules \mathcal{M}_S (Elmendorf–Kriz–Mandell–May, 1997)
- Orthogonal spectra Sp^O(Mandell–May–Schwede–Shipley, 1998)
- Symmetric spectra $Sp^{\Sigma}(Hovey-Shipley-Smith,2000)$

Orthogonal spectra Sp^{O}

- space of all space of all space of all • Topological category O: • objects: finite dim inner product vector spaces • morphisms: O(U, W) := Th(3(U, W)) vector bunde over L(U, W)• Definition: An orthogonal spectra is a continuous functor $E: O \rightarrow Top_{*}$. Morphisms are natural transformations. $O \times O \xrightarrow{E \land F}$ Topx $O \xrightarrow{-1}$ ieft kan $\longrightarrow E \land F$ (the dotted currow) $O \xrightarrow{-1}$ extension (has constructe formula) • Smash product: Day convolution. Stable The-equivalences: The CE):= colim [S, Ecu)] Weak equivalences:
- The third property in Lewis' theorem fails. $\Sigma^{\infty}S^{\circ} = \{S^{\circ}, S^{\circ}, S^{\circ},$

EKMM spectra

- Idea: make things coordinate-free. Fix a universe $U \cong \mathbb{R}^{\infty}$.
- Definition: A prespectrum E is the structure consisting of • $E(v) \in Top_{*}$, \forall inner product $v.s. V \subseteq U$ • $\nabla v, w : \Sigma^{W-V} E(v) \longrightarrow E(W)$, $\forall V \subseteq W$
- Definition:

E is a (Lewis-May-Steinberger) spectrum if TU,W is a low comorphism, & U & V & U & .• Adjunctions: $Top_* \xrightarrow{\Sigma^{\infty}}_{-\infty} PS \xrightarrow{L}_{-\infty} SU$ • forgetful functor

EKMM smash product: the first try

$$W \leftarrow (U, U')$$

$$U \leftarrow \mathcal{A} \qquad U \oplus U$$
• The first try: $E \wedge F(W) = E \wedge F(U, U') = E(U) \wedge F(U')$
• Problem: Depends on \mathcal{A}
• Fix?: The space of all $U \oplus U \rightarrow U$ is contractible.
 $W \rightarrow U$ is contractible.
 $W \rightarrow U$ is contractible.
 $W \rightarrow U$ is contractible.
 $U \rightarrow U$ is $U \rightarrow U$ is contractible.
 $U \rightarrow U$ is $U \rightarrow U$ is $U \rightarrow U$ is $U \rightarrow U$.

EKMM smash product: the second try

• Idea: replace a choice $\{U \oplus U \to U\} \in \mathscr{L}(2)$ by all choices $\mathscr{L}(2) = \mathscr{L}(U \oplus U, U).$ • The second try: • The second try: • Problem: non associative. • Fix?: Quotient out the duplicated copies • Compared the duplicated copies $E \Lambda_{L}F = L (2) \times K (E \overline{\Lambda}F)$ • $L(2) \times L(1) \times L(1) \longrightarrow L(2)$ need $L(1) \rightarrow E$ $u = u = u = u = y = f \circ g \circ h$ $L(1) \rightarrow F$ • Definition: An U-spec is LMS spec with our action of 201).

Symmetric spectra Sp^{Σ}

• Definition: The category of symmetric spectra • objects: Equivariant spaces $X_n^{\Sigma_n}$, $\forall n \in \mathbb{N}$, Str. maps $\Sigma X_n \rightarrow X_{n+1}$ • morphisms: equivariant maps $\Sigma X_n \rightarrow X_{n+1}$ is $\Sigma_m X \Sigma_n$ level wise. $\Sigma^m X_n \rightarrow X_{m+n}$ is $\Sigma_m X \Sigma_n$ nash product: • The first step: $X \otimes Y$ By Vay convolution • Key fact: $D \leq S^2 = : S$ is a comme monorid in $(Sp^{\Sigma}, 0, S)$ Smash product: ② { Sym Spec} ~ {modules over S } • $X \wedge Y := \chi \bigotimes_{\xi} Y$ • Warning: If take stable The to be the w.e. => too many homotopy Need to take weaker replacement. The third property in Lewis' theorem fails.

Comparison

Differences:

- Orthogonal spectra $Sp^{\mathbf{O}}$: model cmodified) for Hill -Hopkins-Ravanel
- EKMM spectra \mathcal{M}_S : hard to define 1200 records Oth face information All objeure fibrant S is not cofibrant • Symmetric spectra Sp^{Σ} : Stable The work will. (hand to do equivariant thry) (Shipley) I convenient model str. on comm. my Quillen equivalences: • (MMSS) Sp^z Zigzag of O.e. Sp^O • (Schwede) Sp 2 and Ms • (Schwede-Shipley) Sp^z (2.e. any correct cat of spec

Some properties

- Ho(S) is triangulated.
 - (Aside) Triangulated category (\mathscr{C} , [1]):
 - distinguished triangles: <x→Y→Z→ XTI]] An familie • translation: $[1] : \mathcal{L} \rightarrow \mathcal{L}$
 - An familiar example: $\mathcal{D}(\mathbb{Z})$
- Fiber sequences are cofiber sequences and vice versa.

The ∞ -treatment: the abstract definition

• \mathscr{S}_* : the ∞ -category of spaces.

• Definition:
$$\Omega X := \lim_{X \to X} \begin{pmatrix} x \\ y \\ x \to \chi \end{pmatrix}$$

- Definition: The ∞ -category Sp is $\lim_{k \to \infty} (\dots \longrightarrow S_* \xrightarrow{\mathcal{N}} S_*)$
- Works more generally for $\mathscr C$ with finite limits

1)
$$\mathcal{L}_{*} := \mathcal{L}^{*}$$
 the pointed cat
2) define $\mathcal{N} := \mathcal{L}_{*} \longrightarrow \mathcal{L}_{*}$
2) take $\operatorname{Sp}(\mathcal{L}) := \operatorname{Lim}(\dots \xrightarrow{\mathcal{L}} \mathcal{L}_{*} \longrightarrow \mathcal{L}_{*})$

 $\mathcal{D}_{1}: S_{X} \rightarrow S_{X}$

A concrete construction via excisive functors

We have a more concrete construction via excisice functors

- \mathscr{C} : an ∞ -category with finite limits.
- $\mathscr{S}^{\mathrm{fin}}_*$: ∞ cost of finite spaces
- Definition:

A spectrum object in $\mathscr C$ is a functor $F:\mathscr S^{\mathrm{fin}}_* o \mathscr C$ such that is

• excisive:	spinds	push out	squarres	to	fullback	squares
reduced:	Sends	terminal	əbis	10 7	tenninal	objs

(Continued)

• Properties(Lurie, Higher Algebra):

- Adjunction: l'presentable. ∑[∞] admits a left adjoint: ∑[∞]: Sp(l) = l: ∑[∞].
 Universal property: l, D presentable, D stable.
 P^L_H (Sp(l), D) = P^L_H (l, D) + the dual statement.
- Agrees with the model category definition.

Stable ∞ -category

 $\bullet\,$ Definition: An $\infty\text{-category}\ {\mathscr C}$ is stable if:

(Lurie) C: a stable ∞-category. Ho(C) has the structure of a triangulated category.

Thank you!