Talk 5, 6
 Basics of Spectra

Hana Jia Kong

The University of Chicago
July 19, 2021
"The first category of spectra"

- (Fraudenthal's suspension theorem)

Let Y be $(n-1)$-connected space. Then $[X, Y] \rightarrow[\Sigma X, \Sigma Y]$ is iso if $\operatorname{dim}(X)<2 n-1$, and surjection if $\operatorname{dim}(X)=2 n-1$.

- $S W$ category (Spanier-Whitehead, 1953):
- objects: pointed cw-cplx
- morphisms: $\operatorname{Hom}(X, Y):=\underset{\underset{q}{q}}{\lim }\left[\Sigma^{q} X, \Sigma^{q} Y\right]$
- More generally, we can include the non-connective objects:
- objects: $\quad(X, n) \mathbb{Z}$
- morphisms: How $((X, n),(Y, m)):=\lim _{q}\left[\Sigma^{q+n} X, \Sigma^{q+m} Y\right]$
- Pros: D Convenient for duality
(2) Triangulated category
- Cons: D Don't have all coproduets
(2) Ho(Top $*) \rightarrow$ SW doesn't preserve coproducts.

Recall: how did spectra arise

- Roughly speaking, a spectrum consists of the following data:
- $E_{n} \in$ Top* $_{*}, n \in \mathbb{Z}$
- Structure maps: $\sigma_{n}=\Sigma E_{n} \rightarrow E_{n+1}$
- They represent cohomology theories.

Theorem (Brown, 1962)
$\tilde{E}^{*}(-)$ reduced generalized collomology theory.
Then there exists an Ω-spec s.t.

$$
\tilde{E}^{n}(x) \cong\left[x, E_{n}\right]>\text { adjoint of } \sigma_{n} .
$$

$E_{n} \rightarrow \Omega E_{n+1}$ is a wee.

- Examples: HA, KU, MU, S

Why spectra

- Spectra and cohomology theories they are not equivalent. There exist "hyperphantom maps": $\quad f: E \rightarrow F$ map of spectra s.t. (1) $f \neq 0$
(2) t induces 0 on cohomology theones.
- The category has point-set models to record the geometric data.
- Has good structures after passing to the homotopy theory.

Multiplicative enhancement

- Multiplicative cohomology theories: In many examples, we have

$$
\tilde{E}^{n}(X) \otimes \tilde{E}^{m}(Y) \longrightarrow \tilde{E}^{m+n}(X A Y)
$$cup producttensor of vector bundles (KU)cartesian product of manifolds caucus)

- In view of Brown's theorem:

$$
\begin{aligned}
& {\left[X, E_{n}\right] \otimes\left[Y, E_{m}\right] \rightarrow\left[X \wedge X, E_{n} \wedge E_{m}\right] \xrightarrow{\text { diag }}\left[X, E_{n} \wedge E_{m}\right]} \\
& \xrightarrow{\mu_{n+m}}\left[X, E_{n+m}\right]
\end{aligned}
$$

Towards a good smash product

- Want a good symmetric monoidal category of spectra.
- (Aside) Symmetric monoidal category $(\mathscr{C}, \otimes, U)$:
- Tensor: $\otimes=\ell \times l \rightarrow l$
- Unit: $u \in l$
- unital \& associative \& commutative diagrams.
- Closed symmetric monoidal: $\operatorname{Hom}_{e}(A \otimes B, C) \cong \operatorname{Hom}_{e}(A$, tom (B, l)
- A naive try: $(X \wedge Y)_{n}: \stackrel{?}{=} X_{n} \wedge Y_{n}$ problem: str. map hard to define
- Adams' "handcrafted" \wedge : $\sum\left(X \wedge Y_{n} \rightarrow(X \wedge Y)_{n+1}\right.$
commintatative $\&$ associative up to homotopy
- $\operatorname{Ho}(S)$:closed sym monoidal category.

An obstacle: Lewis' theorem

Theorem (Lewis, 1990)
There is no symmetric monoidal category (S, \wedge, U) of spectra with the following properties:

- There exists a lax monoidal adjunction $\Sigma^{\infty}: T o p_{*} \leftrightarrows S: \Omega^{\infty}$.
- The canonical map $\Sigma^{\infty} S^{0} \rightarrow U$ is an isomorphism.
- Let Q be the stabilization functor $Q X:=\operatorname{colim}_{n} \Omega^{n} \Sigma^{n}(X)$. There is a natural weak homotopy equivalence f :

1) Adjunction $=\Sigma^{\infty}+\Omega^{\infty}$

A sketch proof of Lewis' theorem
2) $2^{\infty} S^{0}$ is the unit
3) $\Omega^{\infty} \Sigma^{\infty} \times \xrightarrow{\bumpeq} Q X$

Sketch proof:

- $\Sigma^{\infty} S^{0}$ is the unit $\Rightarrow \Sigma^{\infty} S^{0}$ is a comm. monoid.
- Ω^{∞} lax sym monoidal $\Rightarrow \Omega^{\infty} \Sigma^{\infty} S^{0}$ is a comm. monoid.
- $\Omega^{\infty} \Sigma^{\infty} S^{0} \simeq Q S^{0} \Rightarrow Q S^{\circ}$ is comm. monoid

Moore's thin

$$
Q S^{0} \simeq \prod_{\alpha} H A_{\alpha} \quad \text { contradiction! }
$$

Compromises: Different models

- S-modules \mathscr{M}_{S} (Elmendorf-Kriz-Mandell-May, 1997)
- Orthogonal spectra $S p^{\mathrm{O}}$ (Mandell-May-Schwede-Shipley, 1998)
- Symmetric spectra $S p^{\Sigma}$ (Hovey-Shipley-Smith,2000)

Orthogonal spectra $S p^{\mathbf{O}}$

- Topological category O:
- objects: finite dim inner product vector spaces
- morphisms: $\theta(U, W):=\operatorname{Th}(\xi(U, W))$ vector bundle over $\alpha(v, \omega)$ $\{(\omega, \varphi) \mid \omega \in \omega, \omega \perp \varphi(U)\}$
- Definition: An orthogonal spectra is a continuous functor $E=\theta \rightarrow T_{\text {op* }} *$. Moophisms are natural transformations.
- Smash product:

Day convolution.

$m E \wedge F$ the dotted arrow) (has concrete formula)

- Weak equivalences:

Stable π_{x}-equivalences: $\pi_{n}(E):=\operatorname{colim}\left[S_{V}^{\operatorname{dim}(V)+n} E(V)\right]$

- The third property in Lewis' theorem fails.

$$
\Sigma^{\infty} s^{0}=\left\{s^{0}, s^{1}, s^{2}, s^{3}, \cdots\right\}
$$

EKMM spectra

- Idea: make things coordinate-free. Fix a universe $U \cong \mathbb{R}^{\infty}$.
- Definition: A prespectrum $\underset{\text { finite }}{ } E$ dim the structure consisting of inner product $u . s . V \subseteq U$
- E(U) $\in T_{\text {op*, }}, \forall$ inner product $u . s . V \subseteq U$
- $\sigma_{v, w}: \Sigma^{w-v} E(v) \rightarrow E(w), \forall v \subseteq w$
- Definition:
E is a (Lewis-May-Steinberger) spectrum if $\sigma_{v, \omega}$ is a homeomorphism, $\quad \forall V \leq W \subseteq U$.
- Adjunctions: $T_{0 \beta *} \frac{\frac{2}{}_{\infty}^{\frac{1}{\Omega^{\infty}}}}{\frac{L}{\Omega^{\prime}}} \operatorname{lS} \frac{L}{\frac{1}{l_{\text {forget feel }}} S U \text { functor }}$

EKMM smash product: the first try
$w \longleftarrow\left(v, v^{\prime}\right)$
$u \underset{\cong}{\leftarrow} u \oplus u$

- The first try:

$$
E \lambda_{\alpha} F(w)=\underbrace{E \bar{\wedge} F}_{\sim}\left(u_{\text {indexed over }}^{\bullet}, v^{\prime}\right)=E(v) \wedge F\left(V^{\prime}\right)
$$

- Problem: Depends on α
- Fix?: The space of all $U \oplus U \rightarrow U$ is contractible. \leadsto use all choices
- Linear isometry operad $\mathscr{L}(n):=L\left(U^{\oplus n}, U\right)$ $\alpha(2)=$ the space of all choices $u \oplus u \rightarrow u$

EKMM smash product: the second try

- Idea: replace a choice $\{U \oplus U \rightarrow U\} \in \mathscr{L}(2)$ by all choices $\mathscr{L}(2)=\mathscr{L}(U \oplus U, U)$.
- The second try:
(twisted half smash product)
- Problem: non associative. $\alpha(2) \propto(E \bar{\Lambda} F):=\bigcup_{\alpha \in \alpha(2)} E \wedge \alpha F$ $\star(E \wedge F):=\bigcup_{\alpha \in \alpha(2)} E(1) \propto E:=\underset{\alpha \in L(1)}{ } E$
- Fix?: Quotient out the duplicated copies

$$
E \wedge_{L} F=L(2) \underset{L(1) \times L(1)}{\infty}(E \pi F)
$$

$\alpha_{1}(2) \times \alpha(1) \times L(1) \rightarrow L(2)$
need
$\alpha(1) \curvearrowright E$
$u \oplus u \rightarrow u \underset{u \rightarrow u}{ }{ }_{u \rightarrow u}^{h} \mapsto f \circ(g \oplus h)$

- Definition:

An L-spec is LMS spec with an action of $L(1)$.

EKMM smash product: the last step

$\mu_{s} \quad$ s-modules

- Idea: make $\wedge_{\mathscr{L}}$ unital by restricting to all E with $E \wedge_{\mathscr{L}} S \cong E$.\}
- Comparison:

- Weak equivalences: Stable $\pi_{*}-e q$ ii
ϵ
- The third property in Lewis' theorem fails.

$$
\text { (ref: compromises forced by } \quad \text { Emendof }) .
$$

Symmetric spectra $S p^{\Sigma}$

- Definition: The category of symmetric spectra
- objects: Equivariant spaces $x_{n} e^{\Sigma n}, \forall n \in \mathbb{N}$, str. maps $\sum x_{n} \rightarrow x_{n+1}$
- morphisms: equivariont maps with equrivariance

$$
\Sigma^{m} X_{n} \rightarrow X_{m+n} \text { is } \sum_{\text {equivait. }} \times \Sigma_{n} .
$$

- Smash product:
- The first step: $X \otimes Y$ By Day convolution

$$
\begin{gathered}
\Sigma_{p} \times \Sigma_{q} \times \xrightarrow{\times \pi Y} \operatorname{Top}^{2} * \\
\Sigma \sum_{p+q} \ldots \times 7
\end{gathered}
$$

- Key fact: $\triangle \Sigma^{\infty} S^{\circ}=: S$ is a comm monoid in $\left(S_{p}{ }^{\Sigma}, \otimes, S\right)$
(2) $\{$ Sym Spec $\} \simeq\{$ modules orour $S\}$
- $X \wedge Y:=X \otimes_{S} Y$
- Warning: If take stable π_{*} to be the w.e. \Rightarrow too many homotopy Need to take weaker replacement.
- The third property in Lewis' theorem fails.

Comparison

Differences:

- Orthogonal spectra $S p^{\mathbf{O}}$: model modified) for Hrll-Hopkius-Ravonel
- EKMM spectra \mathscr{M}_{S} : hand to define
Ω^{∞} records othtaninfomation
All obi are fibront S is not wfibrount
- Symmetric spectra $S p^{\Sigma}$:Stable π_{*} not wee.
(hent so do equivariant they)
(Shipley) \exists convenient model str. on corm. ing
Quillon equivalences:
- (MAS) $S_{p}^{\Sigma} \underbrace{\text { Zigzag }}_{\text {of Que. }} S_{p}{ }^{0}$
- (Schwede) $S_{p}^{\Sigma} \underset{Q e^{\Sigma}}{\longrightarrow} M_{S}$
- (Schwede-Shipley) $S_{p}{ }^{2} \underset{\text { Que. }}{\overleftrightarrow{ }}$ any 'correct' cat of spec

Some properties

- $\operatorname{Ho}(S)$ is triangulated.
- (Aside) Triangulated category $(\mathscr{C},[1])$:
- translation: [1]: $\subset \rightarrow \ell$
- distinguished triangles: $2 X \rightarrow Y \rightarrow Z \rightarrow x[1]\}+$ axions
- An familiar example: $D(\mathbb{Z})$
- Fiber sequences are cofiber sequences and vice versa.

The ∞-treatment: the abstract definition

- \mathscr{S}_{*} : the ∞-category of spaces.
- Definition: $\Omega X:=\lim \left(\right.$| $*$ |
| :--- |
| \downarrow |
| |$) \quad \Omega: \iota_{*} \rightarrow l_{*}$
- Definition: The ∞-category Sp is

$$
\lim \left(\cdots \Omega \delta_{*} \xrightarrow{\Omega} \delta_{*}\right)
$$

- Works more generally for \mathscr{C} with finite limits

1) $\ell_{*}:=\ell^{*}$ the pointed cat
2) define $\Omega: l_{*} \rightarrow l_{*}$
3) take $S_{p}(l):=\lim _{G}\left(\cdots \Omega l_{*} \xrightarrow{\Omega} l_{*}\right)$

A concrete construction via excisive functor

We have a more concrete construction via excisice functor

- \mathscr{C} : an ∞-category with finite limits.
- $\mathscr{S}_{*}^{\text {fin }}$: ∞-cat of finite spaces
- Definition:

A spectrum object in \mathscr{C} is a functor $F: \mathscr{S}_{*}^{\text {fin }} \rightarrow \mathscr{C}$ such that is - excisive: sends pushout squares to fullback squares

- reduced: sends terminal obis to terminal obis
(Continued)
- When $F: \mathscr{S}_{*}^{\text {fin }} \rightarrow \mathscr{C}$ reduced and excisive:

- Properties(Lurie, Higher Algebra):
- Adjunction: l presentable. Ω^{∞} admits a left adjoint:

$$
\Omega^{\infty}: \operatorname{sp}(l) \mp l: \Sigma^{\infty}
$$

- Universal property: $l_{1} D$ presentable, D stable.
$\operatorname{Pr}_{r}{ }^{L}(S p(l), D) \simeq P_{r}{ }^{L}(l, D)$ + the dual statement.
- Agrees with the model category definition.

Stable ∞-category

- Definition: An ∞-category \mathscr{C} is stable if:
- has zero obj
- Every morph admits a fiber \& cofiber
- fib seq $\Leftrightarrow a$ of $s e q$
- (Laurie) \mathscr{C} : a stable ∞-category. $\operatorname{Ho}(\mathscr{C})$ has the structure of a triangulated category.

Thank you!

