Talk 13 Bredon homology and Smith theory

Hana Jia Kong

The University of Chicago

July 21, 2021

Recall: Elmendorf theorem

Thim (Elmendorf)
There is a Quillen equivalence between
$$\mathscr{P}(\mathrm{Orb}_G)$$
 and GTop.
GTop -> P(Drba) : taking fixed points

• Upshot: Fixed points contains enough information.

Coefficient system

• Definition: Orbit category

• objects: G/H orbits • morphisms: G/H ->G/K iff HErKr = 3reG • an example: Q= Cz id C, Cz/e Proj, Cz/Cz 2id Oswith A coefficient system is a functor $Orba \rightarrow Ab$. • The cortegory of coefficient system is an Abelicen cort. • Examples constant coefficient system $B \in Ab$ B(a/H) = B• Burnside coefficient system B(f) = idg• Definition: Coefficient system A(a|H) = A(H)

The analogue

non-equivariant

equivariant

- $\pi_*(X)$
- coefficient $A \in Ab$
- $H^*(X; A)$, $H_*(X; A)$

 $\underline{TL}_{*}(X) : Orba \rightarrow Ab$ $\underline{A} : Orba \rightarrow Ab.$ $H^{*}(X; \underline{A}), H_{*}(X; \underline{A})$

Bredon cohomology

 non-equivariant cohomology (cellular) CW Complex X Chain complex Cn = (n CXn, Xn-i)Hom (Cn, A) AQ Cn for homology Take H. G-CW complex X note: G-CW str. is compartible with G-action Bredon cohomology Hom coeff sys (Cn, A) & Ab A & Cn for homology Take H, m> H*, v. A

Axiomatic cohomology theory

Definition:

A generalized reduced Bredon cohomology theory is

- a functor: Ĥa^{*}: Ho (hTop_{*}) → Ab²
 with isomorphisms: oⁿ: Ĥaⁿ = Ĥaⁿ⁺¹ ≥ Ĥaⁿ⁺¹ ≥

such that the following axioms are satisfied:

• (additivity) sends
$$V$$
. products to TT
• (exactness) sends cof seq to exact seq
• (dimension) $\widetilde{H}_{a}^{*}(G/H_{+}) \cong \begin{cases} 0 & * \neq 0 \\ A(G/H) & *=0 \end{cases}$ A is a coeff system.

Properties

• Theorem: for a fixed coefficient system, there exists a unique generalized reduced Bredon cohomology functor.

Bredon cohomology for constant coefficient system:
 H^{*}_a (X; <u>A</u>) = H^{*}(X/G; A)
 By checking arxioms + uniqueness.

An exercise: Smith theory

- Around 1940, P.A. Smith proved a number of theorems connecting H^{*}(X) and H^{*}(X^G) for a G-complex X.
- "...(our) proof is an almost trivial exercise in the use of Bredon cohomology" in the Alaska lecture notes.

Smith theory: statement

- G: a finite p-group for a prime p.
- X: a finite dimensional G-space, with finite dimensional mod phomology groups.

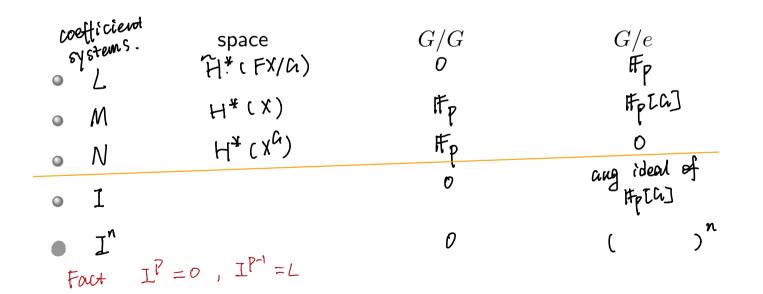
Theorem (Smith) The following hold.

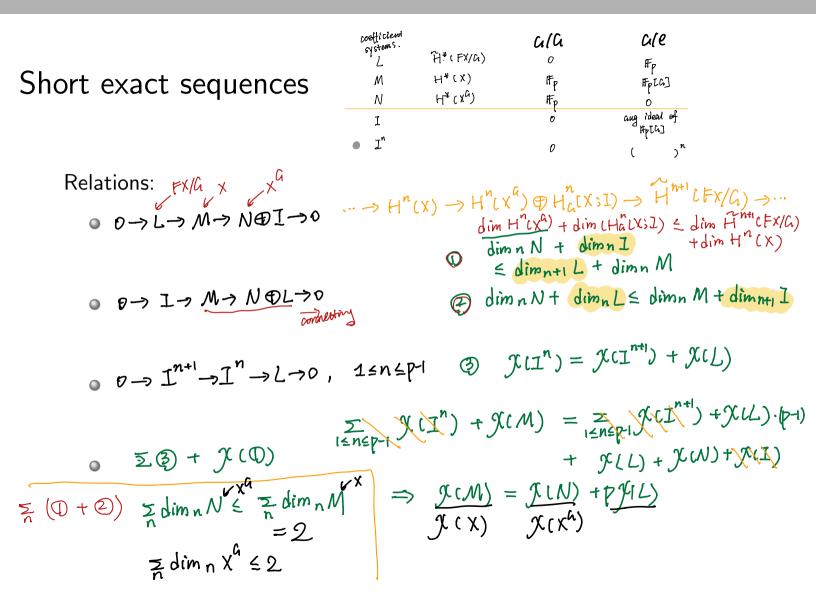
•
$$\chi(X) \equiv \chi(X^G) \mod p$$

• If X is a mod p homologian-sphere, then X^G is either empty or a mod p homologia m sphere for some m < n.

Proof

Assume $G = \mathbb{Z}/p$. • Consider $X^G \to X \to FX := \frac{X}{X^G}$. • By checking the axioms: • $\widehat{H}^{\circ}(FX/G)$ $H^{\circ}(X)$ $H^{\circ}(X^G)$ By checking axioms, all are bedon cohomology my take the corresponding coefficient systems L M N Compute the coefficient system





Back to the proof

We want:

- $\bullet \ \chi(X) \equiv \chi(X^G) \ \mathrm{mod} \ p.$
- If X is a mod p homology n-sphere, then X^G is either empty or a mod p homology m sphere for some $m \leq n$.

Thank you!

Talk 14 Duality

Hana Jia Kong

The University of Chicago

July 21, 2021

Duality: the general definition

- $\bullet \ ({\mathscr C}, \wedge, S):$ a symmetric monoidal category
- Definition: dual pairs

$$X, DX$$
) is a dual pair if \exists $evaluation map$ $\mu : X \land DX \rightarrow S$ $coevaluation map$ $\eta : S \rightarrow DX \land X$ $diagrams$ commute : $\chi \overset{id}{\rightarrow} x \land DX \land X \overset{\mu \land id}{\rightarrow} X$ $+$ the symmetric ones

Duality in the stable category

- $X \subset \mathbb{R}^n \to S^n$: a proper subspace.
- X^c : the component.
- Theorem (Spanier-Whitehead duality) Let X ⊂ Sⁿ be a proper compact subspace. Then Σ¹⁻ⁿX^c is the dual of X₊. Unstable : X₊, X^c are (n-1) - dual : X₊ ∧ X^c → S^{n¬} Unstable : X₊, X^c are (n-1) - dual : X₊ ∧ X^c → S^{n¬} + coevaluation
 Some results:
 - CW cplx are dualizable • $[A, B \land DC] \cong [A \land C, B]$ with some some finiteness • X finite spec $\longrightarrow E_*(X) \cong E(DX)$

Specializing to manifolds

- M: a compact manifold without boundary
- TM: the tangent bundle
- Theorem (Atiyah Duality) We have $D(M_+) \simeq Th(-TM)$.
- · have a version of AD when M has boundary
- Sketch proof: Use SW-duality. $\mathbb{R}^{n}-\mathbb{M} \to \mathbb{R}^{n}-\mathbb{M}$ 1) $\mathbb{M} \longrightarrow \mathbb{R}^{n}$ 2) $\mathbb{Z}^{1-n} \mathbb{M}^{c} = \mathbb{Z}^{-n} (\mathbb{R}^{n}/\mathbb{R}^{n}) = \mathbb{Z}^{-n} (\mathbb{N}/\mathbb{N}-\mathbb{M})$ $\mathbb{R}^{n}-\mathbb{M} \to \mathbb{R}^{n} \to \mathbb{R}^{n}$ $= Z^{-n} N / \partial N = \Sigma^{-n} The normal bundle$ $\mathcal{V} \oplus \mathcal{T} \mathcal{M} = I \mathbb{R}^n \longrightarrow \mathcal{D}(\mathcal{M}_+) \simeq \mathcal{T} h(-\mathcal{T} \mathcal{M})$

From Atiyah duality to Poincaré duality

- E: a cohomology theory (or the representing spectrum)
- M: compact manifold, dimension n, without boundary
- Theorem (Poincaré duality) M is E-orientable. Then $E^r(M_+) \cong E_{n-r}(M_+)$ for any r. • E-orientation: a class $M \in \tilde{E}^n(Th(TM))$ s.t. $\forall x \colon * \to M$, $\pi^* M \in \tilde{E}^n \in S^n$) $\cong \tilde{E}_o(S^\circ) \cong \pi_o(E)$ is the cunit • Sketch proof: use Thom isomorphism. $E_*(M_+) = E^{-*}(DM_+) \stackrel{AD}{=} E^{-*}(Th(-TM))$ $= E^{-*-(-n)}(M_+) = E^{n-*}(M_+)$

Equivariant story

The G-connected case

- E_G^* : an equivariant cohomology theory (or the spectrum)
- $p: E \to B$ a *n*-spherical *G*-bundle, *B* is *G*-connected *B*^H is connected. • Definition: E_G^* orientation class • Choose $x \in B^4$. Let U be the Group s:t $S''=F_x$. • An enertation class is $\mu \in \widehat{E}_a^V$ (Th p), s:t. • $Y \in B^H$ viewed as $Y: G/H \rightarrow B$, the pullback • $Y \notin G = \widehat{E}_a^V$ ($G/H_t \land S^V$) $\cong \widehat{E}_a^C$ (\widehat{H}/H_t) $\cong \mathrm{Tt}_v^H(E)$ is a unit · This gives Thom iso $E_{\alpha}^{W}(B) \longrightarrow E_{\alpha}^{W+V}(Thp).$

The general case

• Idea: make a local G-connected space for each point the connected component • Construction: Fix $x \in B^H$ $(\overline{B}(x))^{C_2} \cong X$ • A presheaf $\overline{\Psi}_x(HK) = (B^K, X)$ for $HK \subseteq H$ $(\overline{B}(x))^C \cong S^1$ • [Elmendonf Hu'm) my a H-space $\overline{B}(x)$ This assembles into a space over TacB \exists a natural map $\overline{B} \rightarrow B$ induced by $(B^{K}, x) \rightarrow B^{K}$. TacB Factorianicant fundamental<math>groupoid of B

Orientation classes: the general definition

- Idea: a family indexed over the fundamental groupoid of the base space
- Definition:
 A family of classes fiber at a
 B x \in B^H, a max) \in E^{V(x)} (Th(p(x)), g:t.
 A family of classes fiber at a
 Thom isomorphism: A family of isomorphism.

The geometric definition

- There is a definition of orientation in a more geometric fashion.
- Non equivariant: the induced automorphism of fiber is independent of the choice of path.

• F the cast of fibers.
A fiber bundle
$$p:E \leftrightarrow B$$
 defines a functor
 $p^*:TI(B) \longrightarrow heF$

- This definition can be made equivariantly, with fundamental groupoid replaced by equivariant fundamental groupoid.
 Equivariant
- Geometric orientability = homological orientability for the Burnside coefficient system.

Thank you!