Lecture 23824 : Applications

Some references:
Rober Oliver's original paper: A proof of the Conner conjecture https://www.jstor.org/stable/1970955?seq=1\#metadata_info_tab_contents

Weinan Lin's note from 2019 Summer School https://iwoat.github.io/2019/notes/Lecture-12.pdf

Matthew Scalamandre REU paper
http://math.uchicago.edu/~may/REU2018/REUPapers/Scalamandre.pdf

Goal: "Hope that you can present shh cool in equivariant hountripy theories to your friends who are not lore."

Review Smith Theory
Prove Conner Conjecture

Suggestion: Stop me at conytine to ask fuestors
Review
slogan: "pts are orbits".

Bredon Colonololy (Talk 13)
A : a coefficient system, ie $A: O W_{G}^{b p} \rightarrow A b$.
dimension axiom: $\quad \widetilde{H}_{G}^{+}\left(G / H_{+}, A\right)=\left\{_{A C G / H)}^{0} \quad x \neq 0\right.$
G/H plays the role of pt.
eg. $H_{G}^{*}(x ; \underline{\underline{2}}) \cong H^{*}(x / G ; x)$
in particular take $X=E G, \quad X / G=B Q$,

Exercise 1. Check (*)
Approach 1. check both sides satisfy the axioms of Bredon cohomoloyies, then chock they agree on O -dimensas. Hence, they are the same.

Appromeh 2. compute both sides by deft. the LHS can be Computed, via cochin couplet.

Recall. for a G-module M, we can
define a coesficint system. M

$$
\begin{array}{rlrl}
\text { by } M(G / K) & =M^{k} & \\
M(G / H) & =M^{H} & H \subseteq g^{H} g^{-1} \\
\underline{M}(G \operatorname{simeg} G G
\end{array}
$$

In particular, give an abeliar gyp A we can equip it with trivial G-aton.
al A gives the constant coff syst.
$\underline{x}(G / H)=2^{H}=2 x$ in the chare eg.

- $H_{G}^{*}(X, A)=H^{*}\left(\operatorname{How}_{\text {Coff }}\left(C_{* m}(X), A\right)\right)$
where

$$
\begin{aligned}
& \underline{C_{n}}(X): O b{ }_{c}^{\circ p} \rightarrow A b \xrightarrow[\text { chis }]{\text { Chis }} \\
& \text { O//t } \rightarrow H_{n}\left(X_{n}^{H}, X_{n-1}^{H} ; \mathbb{Z}\right)
\end{aligned}
$$

Exercise !' What's the relatim baw.

$$
H_{x}^{4}(x ; ?) \cong H_{x}(x / G ; \Downarrow) \text {. }
$$

Why coefticient system?
a.g. in the proof σ smith Thoorem (Talk B)

$$
\begin{aligned}
& G=2 / p, x \quad G-s p a n \\
& x^{\top} \leftrightarrow X \rightarrow X / x^{G}
\end{aligned}
$$

ofiber.

$$
\begin{array}{lll}
\tilde{H}^{*}\left(\left(x / x^{*}\right)\left(G ; \mathbb{F}_{p}\right)\right. & \text { By arims } & \tilde{H}^{*}(x, L) \\
\left.H^{*} C x ; \mathbb{F}_{p}\right) & \sim & H^{*}(x, m) \\
H^{*}\left(X^{G} ; \mathbb{F}_{p}\right) & \text { dotines seff systen. } & H^{*}(x, N)
\end{array}
$$

To keep the ustation consistent with the reforges in the beginny we change the cortetion $M A N L$ in $\operatorname{Talk} B$ to

$$
A B C
$$

Homever, to relute A, B, C are closs need the coeff syter. ts dethe I: orbizp $\rightarrow A b$

! This is sth we dort have in ordinny cohomily.
There are SES of coetticien Systam.

$$
\begin{aligned}
& 0 \rightarrow I \rightarrow A \rightarrow B \oplus C \rightarrow 0 \\
& 0 \rightarrow C \rightarrow A \rightarrow B \oplus I \rightarrow 0 \\
& \left(0 \rightarrow I^{n+1} \rightarrow I^{n} \rightarrow C \rightarrow 0\right)
\end{aligned}
$$

Exercise: Check the above squewers ore exeunt. ag. The $(*-x)$ is exalt means

$$
\begin{aligned}
& 0 \rightarrow I(G / G) \rightarrow A(G / G) \rightarrow B(G / G) \oplus((G / G) \rightarrow 0 \\
& \nu \downarrow \\
& 0 \rightarrow I(G / e) \rightarrow A(G / e) \rightarrow B(G / e) \oplus((G / e) \rightarrow 0
\end{aligned}
$$

counter t rows are extent as abolin oops.
the top row $0 \rightarrow F_{p} \xrightarrow{\longrightarrow} \rightarrow F_{p}$ 甘) $0 \rightarrow 0$

They give LES. Recall in the pf of smith thu. we proud.

$$
\sum_{f} \operatorname{dim} H^{q}\left(X^{G}\right) \leqslant \sum_{f} \operatorname{dim} H^{q}(x)
$$

(If x has finite diversion.)
Nreation $\quad O_{f}:=\operatorname{dim} H^{t}(X)$

$$
\begin{aligned}
& b_{f}:=\operatorname{din} H^{q}\left(X^{\theta}\right) \\
& c_{f}:=\operatorname{dim} \tilde{H}^{f}\left(\left(x^{G}\right) / G\right) \\
& i_{f}:=\lim H_{G}^{q}(X, I)
\end{aligned}
$$

during the of we show. (we need later)

$$
\Leftrightarrow \quad 2 b_{f}+c_{q}+i_{f} \leqslant 2 a_{q}+c_{q}+1+i_{f+1}
$$

Exerlise: play with the LES to clack it.

Conner Conj.
OLDer Transfer:
If $H C K C G$

I $\begin{aligned} & \text { I } \\ & \text { in }\end{aligned}$ induces $\pi^{*}: \tilde{F}^{t}\left(x /[x) \rightarrow \tilde{F}^{t}(x / 1)\right.$
there exi3ts a tromptr nup

$$
z: \quad \tilde{H}^{\approx}(x / t) \rightarrow \tilde{H}^{\infty}(x / k)
$$

st $20 \pi^{2}: \hat{1}^{2}+(x / k) \rightarrow r^{b}(K / k)$
is cuultivination by $\not \subset(K / H)$
(wo hure wot used any Broen Cobonolyy here.)
Recall (Tick. 15 \& 16)
equivant: $i: K / H \hookrightarrow V{ }^{\text {rogn. }}$
v : norad hunde of i
as a tubular neigh bornal

$$
\begin{aligned}
& \text { setting in } V \\
& x(t / H): S^{v} \xrightarrow{t} c^{\prime} H_{+} \wedge S^{v} \xrightarrow{\text { rn }} S^{V}
\end{aligned}
$$

the underlyy is a cbegree mip
$R K . G$ finte. $\quad X(k / r)=1 K(t \mid$

- additive tranfer CAly intuition)

Coeft system.
$A(G \in)$
ves \downarrow
$A(G / e)$

Macbyy fundor
$A(C / G)$
$\sim \operatorname{ros} C \mathrm{~T}$ $A(G / e)$
egy. fived pt Markey funtsr'"
G-usclule ar

$$
m(G M)=M^{H} .
$$

Take $u=Z[E]$

$$
\begin{aligned}
& \left.m^{G} \quad(2[G])^{G}=2 \ll \sum_{G \in G} g\right\rangle \\
& 2 \text { resd oes } \mathrm{jtr} \\
& M \quad(\mathbb{Z}[G])^{e}=\mathbb{Z}[G] \\
& \text { tr: } a \rightarrow \sum_{\delta \in G} g a
\end{aligned}
$$

Recall: Thn (Lewis-mary-McClure)
C_{*} creff system
$H_{G}^{*}(-, C)$ Bradm colowilogy $\forall \in \mathscr{X}$
(repn in a unloste)
Then $H_{G}^{*}(-, c)$ cun extend to an $R O(G)$-gradid one if C an s tand a matoy funter.

Fart. A abelin gpp.
constant cosficinat syston A
can extend to a glackey fantor A
Couner Conjective (proad uy oliver)
If er cpt lie gpp, A abelimg gep.
$X G$-cw cply
(1) finia dims
(2) finitely many type of ordets
then $F_{f}(x ; A)=0 \Rightarrow F(x / G ; A)=0$.
RE. X finite cime is necesseny. countor ex $X=E G T, X_{G}=12 G T$.

$$
G_{1}=x_{2} \quad B G=C R P^{\infty} \quad H^{*}\left(B G_{1}, F_{2}\right)=G_{L}[x]
$$

$$
\mathbb{H}^{2}(E G, A)=0
$$

Pf ingralieats. Surith Thin. (techuiques in the pf) Brolon Coknly

- Trustar my

Idea: Build up from easior cuses.
case 1. $\quad G=\frac{2 / p}{p}, A=\mathbb{F}_{p}$

$$
\begin{aligned}
& X^{G} \rightarrow X \rightarrow X / X^{G} \\
& \mathcal{E} G \text { orbit } \\
& X^{G} \rightarrow X / G \rightarrow\left(X / x^{G}\right) / G
\end{aligned}
$$

WTS $X \in G$ acydir
It's ensugh to shos $X^{G},\left(X / x^{G}\right) / G$ are acyclic,
Now we prove that x^{G} is acydr.
x^{G} follows from $\Sigma \operatorname{din} \tilde{F}^{+}\left(x^{\epsilon}\right) \leq \Sigma \operatorname{dim} h^{2}(x)=0$
$\Rightarrow x^{\natural}$ acydi. x mople
$\left(X / x^{\dagger}\right) / G$: corrapiole to coett syster C.
Recall that we hase,

$$
c_{z}+i_{f}+2 \sum_{i=f}^{r} b_{i} \leq 2 \sum_{i=f}^{r} a_{i}
$$

EX. Recall the abree from the MF in suth Thery.
note thet, b_{i}, a_{i}
$x^{\prime 9} \quad \dot{x}$ are woth acylin.

$$
\begin{array}{ll}
\Rightarrow & \sum b_{i}=2 a_{i}=0 \\
\Rightarrow & L_{f}+i_{q} \leq 0 \\
& c_{q}=0
\end{array}
$$

Finish the cane $\Rightarrow\left(x^{n}\right) C_{q}$ noydir.

Cuse 2. G foisa $p-g p \quad A=F_{p}$
G solvable.

$$
1 \Delta G_{1}, \triangleleft G_{2} \cdots \Delta G_{1}
$$

Gity/G; abelim.
can ursure $G_{i+1} / G_{i}=2 \pi / s$
irduction relues to case 1
$\Rightarrow G$ frote p gy $A=\pi_{p}$ case
Care $3 \quad G$ firice $A=F_{p}$
Need truapin! denten a p-sylu gyp of G_{1} as P trunsfor. $\quad x / p \rightarrow X / G$

$$
\begin{aligned}
& \text { iso } \\
& 2 \cdot \pi^{*}=-x X(G / P) \\
& =-x \| T / P \mid
\end{aligned}
$$

Poisitice intoger coppriet p
\Rightarrow iso in H_{p} coeftimat?

$$
\begin{aligned}
& t^{e}\left(x / p, \pi_{p}\right)=0 \text { by } \operatorname{cose}^{-1} 2^{\prime} \\
\Rightarrow \quad & H^{e}\left(x / a, \pi_{p}\right)=0 .
\end{aligned}
$$

Case4. G funcer $A=Q$ Smilar to cuse 3 .

$$
H^{*}(x / G, Q) \xrightarrow[x|\in| \text { iso in } Q]{\pi^{2}} \mid t^{6}(x / e, Q)^{2} \rightarrow t^{b}(x / G, Q)
$$

the miclalle term is 0 by the condtion.

$$
\Rightarrow \quad G^{0}\left(x^{\prime} / G, Q\right)=0
$$

case $3+4$
F_{p} acycic $\Rightarrow \quad G$ tinice unversal creft Thes, A all ahres sys:

$$
\begin{array}{ll}
H^{x}(x, A)=0 \Rightarrow & H^{b}(x,(,), A)=0 \\
\text { for de } & \text { for all } .
\end{array}
$$

Case $5 \quad G=S \quad F_{p}$ coefinat.
$\left.\begin{array}{c}\text { (furitely } \\ \text { orlinits }\end{array}\right)$

The condition theve firaly
The conction theve fintely manny type of orbites mauns $\{G / T H\}$ appreat in X. thore we ort finitely womy H thore. GOS'. Herce, twor \Rightarrow tince cyali $C \operatorname{cs}^{\prime}$ st $X^{C}=X^{S^{\prime}}$ for C we con use the Cuse $3+x$ $\Rightarrow \quad X^{C}, X / c$ are ayin. $\left(\mathbb{F}_{b}\right)$
$\Rightarrow \quad X^{S}=X^{C}$ is F_{p}-acylic.
use the same trible in case $/$
$\Rightarrow\left(x / x^{s} /{ }^{s}\right)$ is \mathbb{F}_{p}-uylic -
$\Rightarrow x^{s l}$ is F_{p}-acydic.
cose $6 \quad G=5 \quad Q$ crefficut.
Apply a rational wosles sinith therien. we lam prove this cuse siuleoly as case 5^{\prime}
ex. Cherbe. this case.
Case 5tb $G=S^{\prime}$ fo all chelm gy cotfient.
case 7.

$$
\begin{aligned}
& G=T^{n}=\underbrace{s^{\prime} x \cdot-x s^{\prime}}_{n \cdot \operatorname{cop} y^{\prime} y} \\
& S^{\prime}=T \sigma \cdots \tau^{n-1} \triangleleft T^{n}
\end{aligned}
$$

incluoter verlue to cure $6+5$.
case 8 . GT cut lie
Funt: G connctell apt lie gpp. With waxid toms π^{n}
Than. $X\left(G / N_{G}(19)=1\right.$
Comsier.

$$
H^{*}\left(X / N_{q}\left(7^{n}\right)\right) \xrightarrow{\pi^{0}} H^{*}(X / G) \xrightarrow{L} t^{b}\left(X / N_{G}\left({ }^{(n)}\right)\right.
$$

iso.
But X cayllic $\Rightarrow X / T^{n}$ acylic $($ case 7$)$
$\left.\Rightarrow X N_{G} G^{n}\right)$ acydil ((cose $\left.3+x\right)$
the Feat $\left.\mu_{T} L T^{n}\right) / T^{n}$ is a founte.
in a Cpt lie gay G meth noxinal torns T^{n}.

2t. checte that $\operatorname{Nac}\left(T^{n}\right) / T^{n}$ is tivite i- cpt lie gop t.

$$
H^{*}\left(x / N_{G-T}\right)=0>1 t^{*}(x / 4)=0
$$

finsh the E_{1} cet lie gy cure.

