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In the previous talk we have discussed the category of G-spaces GTop. In
this note, we will look at another model of GTop, i.e. the category of presheaves
on the orbit category that takes value in the category of spaces. Throughout this
note, G is a finite group or a compact Lie group, and by saying the subgroups
of G, we refer to only those closed subgroups.

For a group G, its orbit category OrbG is the category whose objects are
orbits G/H, and morphisms G-equivariant maps. A presheaf on orbit category
is a contravariant functor from the orbit category OrbG. Given a G-space X,
take its H-fixed point for each subgroup H and the system of fixed point spaces
{XH , H ⊂ G} forms a presheaf on orbit category. In the other direction, given
a presheaf X , evaluating at the orbit G/e with G action, we obtain a G-space
X (G/e). This actually gives a pair of adjoint functors

Θ : P(OrbG) ⊥
//
GTop : Φoo ,

where P(OrbG) denotes the category of presheaves on the orbit category that
takes value in the category of spaces.

A. D. Elmendorf proved in [Elm83] that this adjoint pair induces equivalence
between the homotopy categories. In fact, with the correct model category
structures on both hand sides, this equivalence of homotopy categories can be
seen in the model categorical level.

Theorem 0.1 (Elmendorf). There is a Quillen equivalence.

Θ : P(OrbG) ⊥
//
GTop : Φoo

1 Model category

The model category theory is for doing homotopy theory. Quillen developed the
definition of a model category to formalize the similarities between homotopy
theory and homological algebra.
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1.1 Weak factorization system and model structure

Definition 1.1. A weak factorization system (WFS) on a category C is a pair
L ,R of classes of morphisms of C such that

• Every morphism f : X → Y of C may be factored as the composition of
a morphism in L followed by one in R

f : X
∈L−−→ Z

∈R−−→ Y.

• The classes are closed under having the lifting property against each other:

– L is precisely the class of morphisms having the left lifting property
against every morphism in R;

– R is precisely the class of morphisms having the right lifting property
against every morphism in L .

Definition 1.2. A model structure on a category C is a choice of three dis-
tinguished classes of morphisms: cofibrations C, fibrations F and weak equiva-
lences W , satisfying the following conditions:

• W contains all isomorphisms and is closed under two-out-of-three: given
a composable pair of morphisms f , g, if two out of the three morphisms
f , g, g ◦ f are in W, so is the third;

• (C,F∩W ) and (C∩W,F ) are two weak factorization systems on C . F∩W
is called acyclic fibrations and C ∩W is called acyclic cofibrations.

When a category C is complete and cocomplete category with a model struc-
ture, we call it a model category.

A key example which motivated the definition is the category of topological
spaces.

Example 1.3. The category of topological spaces, Top, admits a standard
model category structure with fibrations as Serre fibrations, equivalences as
weak homotopy equivalences and cofibrations as the retracts of relative cell
complexes.

In fact the model structure is cofibrantly generated in the sense that there
are small sets of morphisms I and J which permit the small object argument
such that I generates C and J generates C∩W by taking transfinite composition
of pushouts of coproducts and taking retracts. The generating sets are

I = {Sn−1 → Dn, n ≥ 0}, J = {Dn → Dn × I, n ≥ 0}.

Example 1.4. Cofibrantly generated model structures transfer along adjunc-
tions. Use the cofibrantly generated model structure on Top, we obtain a
cofibrantly generated model structure on GTop with generating sets

IGTop = {G/H × i}H⊂G,i∈I , JGTop = {G/H × j}H⊂G,j∈J .
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Similarly, we can also put a cofibrantly generated model structure on P(OrbG)
which has the generating sets:

IP(OrbG) = {MapG(−, G/H)× i}H⊂G,i∈I ,

JP(OrbG) = {MapG(−, G/H)× j}H⊂G,j∈J .

1.2 Homotopy category of model category

The homotopy category Ho(C ) of a model category C is the localization of C
with respect to the class of weak equivalences

C → Ho(C ) = C [W−1],

so that the homotopy category has the universal property that the weak equiv-
alences become actual isomorphisms.

Remark 1.5. This definition of homotopy category does not depend on the choice
of fibrations and cofibrations. It only depends on the underlying category with
weak equivalences (C ,W ). However, the model structure makes the homotopy
category easier to handle. In fact, with a model structure, Ho(C ) is equivalent
to the category whose objects are those which are both fibrant and cofibrant,
and morphisms are the equivalence classes of morphisms under left homotopy.
This definition of homotopy category avoids the set theory technical issues one
may meet with while doing localization.

1.3 Quillen equivalences

Quillen equivalences are one convenient notion of morphisms between model
categories.

Definition 1.6. For C and D two model categories, an adjoint pair

F : C ⊥
//
D : Goo

is a Quillen adjunction if the following equivalent conditions are satisfied:

1. F preserves cofibrations and acyclic cofibrations;

2. G preserves fibrations and acyclic fibrations;

3. F preserves cofibrations and G preserves fibrations;

4. F preserves acyclic cofibrations and G preserves acyclic fibrations.

Definition 1.7. The Quillen adjoint pair

F : C ⊥
//
D : Goo

is a Quillen equivalence, if for any cofibrant object X ∈ C and fibrant object
Y ∈ D, FX → Y is a weak equivalence iff the adjoint X → GY is a weak
equivalence.

Proposition 1.8. When (F,G) is an Quillen equivalence, they induces equiv-
alence on homotopy categories, i.e. the derived functors (LF,RG) are equiva-
lences of categories.
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2 Presheaves on orbit category

Definition 2.1. Orbit category associated to a group G, denoted by OrbG, is
the category whose

• objects are G-orbits G/H,

• morphisms are G-equivariant maps.

Example 2.2. Let GTop be the category of G-spaces and let P(OrbG) be
the category of presheaves on the orbit category OrbG. Let X be a G-space.
Consider the fixed point functor X(−) for every subgroup H ⊂ G. This defines
a functor Φ : GTop → P(OrbG). Φ has a left adjoint Θ : P(OrbG) → GTop
which sends a presheaf χ to χ(G/e), on which the G action is induced by the
group action on orbit G/e.

In the previous example, we get a adjoint pair

Θ : P(OrbG) ⊥
//
GTop : Φoo .

Consider the model structures on GTop and P(OrbG) which are inherited from
the classical Quillen model structure on Top. It is easy to check that this is a
Quillen adjunction, and the next question is that if it is a Quillen equivalence.
And Elmendorf’s theorem gives an affirmative answer to this question.

Theorem 2.3. (Elmendorf)
There is a Quillen equivalence

Θ : P(OrbG) ⊥
//
GTop : Φoo .

Elmendorf‘s original proof [Elm83] only showed these two categories have
the same homotopy theory by constructing explicitly a functor Ψ : P(OrbG) →
GTop and a natural transformation ϵ : ΦΨ → id such that ϵH : (Ψχ)H →
χ(G/H) is a homotopy equivalence. We will also give another proof in the next
section which proves the statement in the model category level.

3 Proof of Elmendorf’s theorem

We provide two proofs here. One is by Piacenza and uses model category (see
[May82, VI.6]). The other is Elmendorf’s original proof, by constructing explic-
itly the functor Ψ using bar construction (see [May82, V.3]).

3.1 Sketch proof using model category

For a Quillen equivalence, we need model category structures on both cate-
gories. The model structure we use on P(OrbG) and GTop are inherited by
the classical model structure on the category of spaces, i.e. the weak equiva-
lences and fibrations are defined level-wise, and the cofibrations are defined by
lifting property.
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Definition 3.1. There is a model structure on P(OrbG) where f : X → Y is
a weak equivalence (resp. fibration) if

f(G/H) : X (G/H) → Y (G/H)

is a weak equivalence (resp. fibration) in Top for every G/H ∈ OrbG, and
f : X → Y is a cofibration if it has left lifting property with respect to all
acyclic fibrations.

Definition 3.2. There is a model structure on GTop, where f : X → Y is
a weak equivalence (resp. fibration) if fH : XH → Y H is a weak equivalence
(resp. fibration) in Top. for every subgroup H ⊂ G. f : X → Y is a cofibration
if it has left lifting property with respect to all acyclic fibrations.

Under these model structures, we are able to identify the cofibrant objects in
P(OrbG): cofibrant objects are retracts of cellular objects, and cellular objects
are generated under pushout along inclusions and direct colimits, by

{MapG(−, G/H)× Y | H ⊂ G, Y is a cell in Top}

A key observation is that (−)H preserves retracts, relevant pushouts, and
direct colimits. Therefore, by checking it on the generating objects, we obtain
the following lemma:

Lemma 3.3. If X ∈ P(OrbG) is cofibrant, then the unit of the adjunction

η : X → ΦΘ(X )

is an isomorphism.

Proof. It’s sufficient to check when X = MapG(G/H,−)× Y . We have

X (G/K) = MapG(G/K,G/H)× Y ∼= (G/H)K × Y ∼= (X (G/e))K .

The lemma leads to the following proof of the main theorem.

Proof of Elmendorf ’s theorem. Given f : Θ(X ) → Y , we have that

X (G/H)
ηH−−→ (X (G/e))H

fH

−−→ Y H .

By the previous lemma, ηH is a weak equivalence. The 2-out-of-3 axiom then
shows that fH is a weak equivalence iff the composition X (G/H) → Y H is.
Since weak equivalences on P(OrbG) and GTop are defined level-wise, f :
Θ(X ) → Y is a weak equivalence iff its adjoint X → Φ(Y ) is.
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3.2 Construction using bar construction

Since (Θ,Φ) is a Quillen equivalence, it induces an equivalence of homotopy
categories, i.e. the derived functors (LΘ, RΦ) are equivalences of homotopy
categories. In the original proof in [Elm83], the left derived functor Ψ = LΘ is
constructed explicitly using bar construction.

Definition 3.4. Let C be a category and let D be a category equipped with a
Cartesian product ×. Let F be a contravariant functor C → D and let G be a
covariant functor C → D . The construction B∗(F,C , G) defines a simplicial D
object whose n-th level is

⨿cn→...→c0F (c0)×G(cn).

The face maps are defined by composition and the degeneracies by inserting the
identity map.

When D is tensored over Top, we can take the geometric realization of this
simplicial object, and we obtain the bar construction |B∗(F,C , G)|.

By some general theory of bar construction, when G is a functor corepre-
sented by c ∈ C , i.e. G = Gc = MapC (c,−), there is a natural homotopy
equivalence obtained by composing and apply F :

|B∗(F,C , G)| → F (c).

Now we apply the above facts in our case. Let C be OrbG, F be X and
let G be the functor J : OrbG → GTop which realizes each orbit G/H to the
corresponding G-space G/H. Since G acts on J in a way compatible with the
face and degeneracy maps, the bar construction gives a G-space.

Define Ψ : P(OrbG) → GTop to be

Ψ(X) := |B∗(X,OrbG, J)|.

Bar construction commutes with fixed point functors. Therefore we have

(Ψ(X))H ∼= |B∗(X,OrbG, J
H)| ≃−→ X(G/H).

In other words, Ψ gives a homotopy inverse of Φ.
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