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Fix a compact Lie group G and a complete G-universe U . The main goal of this
talk is to give an introduction to equivariant stable homotopy theory. We introduce
the model of the Lewis-May spectra GS U today and we will orthogonal G-spectra
next week. After the point-set model is built, we will introduce the various fixed
points constructions. We will also introduce the Wirthmüller isomorphism, the
isotropy separation sequence and the Tate diagram.

1 The category GSU

In this talk, we will introduce the Lewis-May spectra. We will see orthogonal G-
spectra next week. A G-universe U is an infinite dimensional G-representation
such that U contains the trivial representation and that if U contains an irreducible
representation V , U must contain infinitely many copies of V.

Definition 1.1. A G-prespectrum assigns a pointed G-space EpV q for each repre-
sentation V in the universe U , together with G-equivariant structure maps

σV,W : SW´V ^ EpV q Ñ EpW q

whenever V Ă W Ă U , where W ´ V denotes the orthogonal complement of
V in W and SW´V is the one-point compactification of W ´ V . The structure
maps satisfy some compatibility conditions. The morphisms are defined to be those
maps compatible with structure maps. We use GPU to denote the category of
G-prespectra indexed on the universe U .

Definition 1.2. A G-spectrum E is a G-prespectrum such that all the adjoints
σ̃V,W : EpV q Ñ ΩW´V EpW q of σV,W are G-homeomorphisms. We use GS U to
denote the category of G-spectra indexed on the universe U .

There is the spectrification functor L left adjoint to the inclusion functor `:

L : GS U GPU : `
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We have change of universe functors. For a G-equivariant linear isometry f :
U Ñ U 1 (see [EHCT, P137])

f˚ : GS U GS U 1 : f˚

A map of G-spectra f : E Ñ E1 is a weak equivalence if EpV q Ñ E1pV q is
a weak equivalence for all V . When U and U 1 are isomorphic G-representations,
L pU ,U 1q is G-contractible, and different choices of f will induce weakly equivalent
functors GS U Ñ GS U 1.

When U contains all irreducible G-representations, we say it is a complete uni-
verse; when U contains only the trivial representations, we say it is a trivial universe.
The G-spectra indexed on a complete universe is often called genuine G-spectra and
on a trivial universe is often called naive G-spectra. We assume U to be a com-
plete universe in this notes, unless otherwise stated. Then i : UG Ñ U induces an
adjunction pi˚, i

˚q between naive G-spectra and genuine G-spectra.
We may use f˚ to define the smash product. The idea is to first define the exter-

nal smash product, which lands in GS pU ‘Uq, and then change the universe back
to U . The smash product is unital, associative and commutative up to equivalence.

We skip the details of the following construction.

• We can define suspension spectra functor Σ8G ; we have sphere spectra Sn P
GS U for all integers n.

• We also have function spectra F pE,F q P GS U for E,F P GS U .

• We have the notion of G-CW spectra and we have the G-CW approxmiation
functor Γ. For G-spectra E,F , we use rE,F sG to denote the homotopy
classes of maps ΓE Ñ ΓF .

Definition 1.3. We define the H-equivariant homotopy groups of a G-spectrum E
to be

πHn pEq “ rG{H` ^ S
n, EsG.

This assembles into a coefficient system

πnpEq : Oop
G Ñ Ab, πnpEqpG{Hq “ πHn pEq.

Theorem 1.4. ([EHCT, XII.6.8]) For a map of G-spectra f : E Ñ E1, fpV q
induces a weak equivalence for all V if and only if πHn pfq is an isomorphism for all
n P Z and H Ă G.

We conclude by defining the fixed point spectra. Note that in the Lewis-May
model, every object is fibrant, so the fixed point functor is homotopical. In other
models, there is usually a “naive fixed point functor” and a “derived fixed point
functor”. Let D P GS UG be a naive G-spectrum. We define DG P S UG to be
DGpV q “ DpV qG. For genuine G-spectrum E, we define EG “ pi˚EqG. We have
the following adjunctions between spectra, naive G-spectra and genuine G-spectra

S UG GS UG GS U
j˚

p´q
G

i˚

i˚
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For naive G-spectra D P GS UG, we define D{G P S UG to be L applied to
levelwise G-orbits. It is left adjoint to j˚ “ p´qtriv : S UG Ñ GS UG. However,
for genuine G-spectra E P GS U , the i˚E{G is not a useful definition for E{G.
We have a substitute definition of E{G when E is G-free: in this case, we have a
G-free naive G-spectrum D up to equivalence such that i˚D » E. We define E{G
to be D{G instead.

For a G-spectra E, we define the E-(co)homology groups of X to be

EnGpXq “ πnpE ^Xq
G;

EGn pXq “ πnF pX,Eq
G.

1.1 Constructions of the transfer map

In this section, we assume the group G is a finite group. Given subgroups K Ď

H Ď G, we have a natural map of left cosets G{K Ñ G{H given by projection.
This map lives in the category TopG of G-spaces. The transfer map is a “wrong
way” map G{H Ñ G{K that lives in the stable homotopy category, that is, a map
in colimVĂU rΣ

V
`G{H,Σ

V
`G{KsG.

Let’s choose an H-representation W and an H-equivariant embedding

j : H{K ãÑW

such an embedding is completely determined by the image w :“ jpHq. Without
loss of generality, we can assume the open unit balls around the image points g ¨w
are pairwise disjoint. Therefore, we get an embedding:

H{K` ^DpW q ÑW

The Pontryagin-Thom collaspse map (i.e. sending the complement of the open balls
jpH{K` ^DpW qq to the point at infinity) gives us a map:

SW Ñ H{K` ^ S
W

then compose with G` ^H p´q, we get the desired transfer map:

trHK : G{H` ^ S
W Ñ G{K` ^ S

W

which represents a map in the equivariant Spanier-Whitehead category SWG. Note
that in the construction of the transfer trHK , we made certain choice of the embed-
ding H{K ãÑW . We should remark that different choices would lead to the same
class in the Spanier-Whitehead category SWG.

Example 1.5. Let G “ H “ C3 and K “ teu be the trivial subgroup. We let W
be a C3-representation of C by a rotation of 2

3π around 0. We embed C3{teu into

W as 2, 2e
2
3πi and 2e

4
3πi. Then the transfer map in this example is a map:

trC3

teu : SW Ñ pC3q` ^ S
W

Consequence: Using the transfer map, we are able to get covariant functors
πnpEq : OG Ñ Ab for a genuine G-spectrum E. This will equip πnpEq with the
structure of a Mackey functor.
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2 Wirthmüller Isomorphism

For a subgroup H Ă G, we can restrict the G-universe U to an H-universe, which
we continue to denote by U . Then we have the forgetful functor

ResGH : GS U Ñ HS U

Its left adjoint is the induced G-spectra G` ^H ´ and its right adjoint is the
coinduced G-spectra FHpG`,´q

Let LpHq be the tangent H-representation of eH in G{H. Note that it is {0}
when G is a finite group.

Theorem 2.1 (Wirthmüller Isomorphism). [EHCT, XVI.4.9] Let H be a subgroup
of G and X an H-spectrum. Then there is a natural weak equivalence of G-spectra

FHpG`,Σ
LpHqXq Ñ G` ^H X.

For a proof when G is finite, see [Sch, Theorem 4.9] or [GHT, Theorem 3.2.15]..
Consequence 1: Now let X in the above theorem be the sphere spectrum S, we

conclude that the orbits are self-dual when G is finite, that is, the Spanier-Whitehead
dual of G{H is itself.

Consequence 2: We have

EG˚ pG` ^H Xq – EH˚ pΣ
LpHqXq.

This compliments
E˚GpG` ^H Xq – E˚HpXq.

3 Geometric Fixed points and Isotropy Separation
Sequence

In this section, G is a finite group. For G-spaces X,Y , we have pX ^ Y qG –

XG ^ Y G. This is not true for G-spectra. In fact, for suspension spectra, we have
the Tom Dieck splitting theorem (will be in next week)

pΣ8GAq
G »

ł

pHqĎG

Σ8EWH` ^WH AH

where the index pHq Ď G means the sum is running over all the conjugacy classes of
subgroups of G and WH is the Weyl group WH :“ NGH{H of H. The geometric
fixed point functor ΦG : GS U Ñ S UG is an alternative that enjoys the following
nice properties

ΦGpΣ8GXq » Σ8XG,

ΦGpX ^ Y q » ΦGX ^ ΦGY.

The conceptual way to defining ΦG is as follows. Denote P the family of all
proper subgroups of G. We can construct a G-CW complex EP which is universal
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in the sense that EPH is contractible whenever H is a proper subgroup and EPG
is empty. For example, this can be done by taking colimn Spnρ̄Gq, where Spnρ̄Gq
is the unit sphere in nρ̄G.

The isotropy separation sequence is the cofiber sequence:

EP` Ñ S0 Ñ ĄEP

where the first map is sending EP to the non-based point. By the above definition

of ĄEP, we see that it can be characterized by the universal property that ĄEP
H
» S0

for any proper subgroup H and ĄEP
G
» ˚.

Our model of the isotropy separation sequence is thus

Sp8ρ̄Gq` Ñ S0 Ñ S8ρ̄G .

For a proper subgroup H Ă G, ResGHρG “ |G{H|ρH . So we have ρ̄G
H ‰ 0, which

shows pS8ρ̄GqH » S8 » ˚ and justifies our claim about the homotopy types.

Definition 3.1.
ΦGpXq “ pX ^ ĄEPqG

The “geometric” in the name comes from the following equivalent definition.
For simplicity, we do it for U “ 8ρG. Here, ρG “ RrGs the regular representation
of the finite group G, so that UG “ R8. The geometric-fixed-point-prespectra
ΦGD P PUG of a G-prespectrum X is defined by:

ΦGXpV q :“ XpρG b V q
G (1)

for V Ă S UG, and with structure maps:

SW´V^ΦGXpV q – pSpW´V qbρG^XpρGbV qq
G σG

V,W
ÝÝÝÑ XpρGbW q

G “ ΦGXpW q

One then use the spectrification L to turn it into a spectra. Although we have
not explained the term Σ-cofibrant, we have a feeling of the equivalence of the two
definitions from the following proposition:

Proposition 3.2. [EHCT, XVI.3.4] For a Σ-cofibrant G-prespectra D, there is a
weak equivalence ΦGLD » LΦGD.

The geometric fixed points functor commutes with the suspension functor in the
sense that the geometric fixed points ΦGpΣ8GY q is isomorphic to the suspension
spectrum Σ8Y G for any based G-space Y . This can be seen using the second
construction above and the fact that the G-fixed points of the regular representation
ρG is R. Namely, for any V P S UG,

ΦGpΣ8GY qpV q “ pY ^ S
VbρGqG – Y G ^ SV “ Σ8Y GpV q.

We can define ΦH : GS U Ñ pWGHqS UH . First, we restrict X P GS U to
pNGHqS U , so that H Ă NGH is a normal subgroup. Then, for normal subgroups
N Ă G, we define ΦN : GS U Ñ pG{NqS UN by taking the family F rN s “

tK Ă G|N Ć Ku and letting ΦN pXq “ pX ^ ČEF rN sqN . (Note that this F rN s
is not the same as the previously used F pNq.) It turns out that geometric fixed
points also detect weak equivalence.
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Theorem 3.3. [EHCT, XVI.6.4] A map f : E Ñ E1 of G-spectra is an equivalence
if and only if ΦHf is a non-equivariant equivalence for all H Ă G.

For a proof in the orthogonal spectra model, see [GHT, Theorem 7.12].
Let’s wrap up the discussion of geometric fixed points by summarizing its prop-

erties, despite lacking the time to prove all of them:

Remark 3.4. The geometric fixed points functor ΦG : GS U Ñ S UG has the
following properties

1. ΦG is homotopy invariant which means it preserves π˚-isomorphism

2. ΦG commutes with suspension, i.e. ΦGΣ8AG – Σ8AG for any based G-CW
complex A

3. ΦG is symmetric monoidal

4. ΦG commutes with filtered homotopy colimits

For completeness, we mention what happens in the model of orthogonal spectra.
In orthogonal spectra, the naive fixed points is not ”homotopically correct”, i.e.
it doesn’t send π˚-isomorphisms of orthogonal G-spectra to π˚-isomorphisms of
orthogonal spectra. However, the naive fixed points functor can be right derived
via replacing a spectrum X by a π˚-isomorphic G-Ω-spectrum, and then take naive
fixed points. This is denoted FG. One can define the geometric fixed point functor
ΦG : SpO

G Ñ SpO using Equation 1; or defined it to be FGpĄEP^Xq as in [HHR].
These two definitions are equivalent:

Proposition 3.5. [Sch, Proposition 7.6] For any orthogonal G-spectrum X, we
have a map of spectra called evaluation map

ev : FGpĄEP ^Xq Ñ ΦGX

such that for any G-representation W P U , we have a weak equivalence evpW q :
FGpẼP ^XpW qq Ñ ΦGXpW q.

4 Homotopy Fixed points and Tate Construction

In this section, we’ll see the homotopy fixed points, homotopy orbits and Tate
constructions following [GM].

Recall that the fixed point functor p´qG in the category of G-spaces doesn’t
preserve weak equivalences. And we have seen that homotopy fixed points can ac-
tually detect (non-equivariant) weak equivalences of G-spaces. The homotopy fixed
points of a G-space A is given by the space of G-equivariant maps MapGpEG`, Aq
and the homotopy orbits is given by its Borel construction EG` ^G A.

Now we define the stable analogue of homotopy fixed points and homotopy
orbits.
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Definition 4.1. The homotopy fixed points XhG of a G-spectrum X is defined as
the (derived) fixed point spectrum FGpEG`, Xq and the homotopy orbits XhG is
defined as EG` ^G X.

Denote ĄEG :“ cofibpEG` Ñ S0q. Since smashing with X preserves cofiber
sequence, we have another cofiber sequence:

EG` ^X Ñ X Ñ ĄEG^X

And by the isomorphism X – F pS0, Xq, we get a map X – F pS0, Xq Ñ
F pEG`, Xq. This induces a diagram:

EG` ^X X ĄEG^X

EG` ^ F pEG`, Xq F pEG`, Xq ĄEG^ F pEG`, Xq

»

It turns out that the left vertical map is always a π˚-isomorphism [GM, Proposi-
tion 1.2] (because it is a Borel equivalence ^EG`) and pEG` ^Xq

G » EG` ^G
X “ XhG as a special case of the Adams isomorphism, hence after taking the fixed
points one has the following diagram

XhG XG pĄEG^XqG

XhG XhG XtG

»

norm

where the right square is a pullback diagram and the lower right corner XtG is
called the Tate spectrum of X.

Moreover, if we take G to be a prime order cyclic group Cp, then ĄEG » ĄEP
and the top right corner becomes the geometric fixed point ΦGX of X.

The name Tate construction comes from the following known fact: when we
compute the homotopy groups π˚pHM

tGq of the Tate spectrum of the Eilenberg-
Maclane spectrum of M , one recovers the Tate cohomology Ĥ˚pG;V q for a G-
module V “MpG{eq.

Here is a short explanation of the Tate construction in the modern 8-categorical
language following [NS].

Definition 4.2. Let C be an 8-category in which colimits and limits indexed over
BG exist. Define the homotopy orbits functor

p´qhG : CBG Ñ C
F ÞÑ colimBG F

and homotopy fixed points functor

p´qhG : CBG Ñ C
F ÞÑ lim

BG
F
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Let p : BGÑ ˚ be the canonical projection and p˚ : C Ñ CBG be the pullback
functor. Then p´qhG is left adjoint to p˚ and p´qhG is right adjoint to p˚. Let’s
put this into a more general context. Let f : X Ñ Y be a map of Kan complexes,
denote f! and f˚ the left adjoint and right adjoint functors of p˚, respectively. We
will construct the norm map as a natural transformation Nmf : f! Ñ f˚, So the
norm map in our interest becomes a special case.

We still need to impose some conditions on C. The condition we need is to
assume C is a preadditive 8-category, whose definition directly corresponds to the
one in 1-category [HA, Definition 6.1.6.13]. We say that a map of f : X Ñ Y of
Kan complexes is n-truncated if all the homotopy fibers of f has trivial homotopy
groups at degree higher than n. Furthermore, we say a 1-truncated map is a relative
finite groupoid if each fiber of f has finitely many connected components and each
of which is a classifying space of a finite group.

We refer the readers to [NS, Construction I.1.7] for the details of the construction
of the norm transformation and summarize the result in the following proposition.

Proposition 4.3. Let C be a preadditive 8-category which has limits and colimits
over all classifying spaces of finite groups. Let f : X Ñ Y be a relative finite
groupoid of Kan complexes, then both the left adjoint f! and right adjoint f˚ of f˚

exist, and there is a natural transformation :

Nmf : f! Ñ f˚

Now we can define the Tate construction in a stable 8-category C.

Definition 4.4. Let C be a stable 8-category which admits all limits and colimits
over BG. The Tate construction is the cofiber

p´qtG : CBG Ñ C
X ÞÑ XtG :“ cofibpNmG : XhG Ñ XhGq

For our interest, we consider the Tate construction in Sp the 8-category of
spectra.

Example 4.5. If we take the Eilenberg-Maclane spectrum HM of the G-module
M , then we recover the usual Tate cohomology via taking the homotopy groups of
the Tate spectrum of HM tG

π˚pHM
tGq – Ĥ´˚pG,Mq
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