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Suppose G is a finite group, and let OrbG be the orbit category of G. By
Elmendorf’s theorem (cf. Talk 2.2), there is an equivalence between the ho-
motopy theory of G-spaces, and the homotopy theory of topological presheaves
over OrbG. In this note, we introduce Mackey functors and explain Guillou
and May’s version of Elmendorf’s theorem for G-spectra. This result gives an
algebraic perspective on equivariant spectra.

1 Symmetric Monoidal Categories

Definition 1.1. A symmetric monoidal category (C ,⊗, I) is category C equipp-
ed with ⊗ : C × C → C and an unit object I ∈ C such that ⊗ is associative,
unital and commmutative up to coherent natural isomorphisms α, β, λ and ρ.
That is, C is also equipped with an associator

αA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C,

a commutator
βA,B : A⊗B ∼= B ⊗A,

a left unitor λA : I ⊗ A→ A and a right unitor ρA : A⊗ I ∼= A such that they
are all naturall isomorphisms and the following diagrams commute.

A⊗ (B ⊗ (C ⊗D))
α //

1⊗α

��

(A⊗B)⊗ (C ⊗D)
α // ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)
α

// (A⊗ (B ⊗ C))⊗D

α⊗1

OO

A⊗ (B ⊗ C)
α //

1⊗γ

��

(A⊗B)⊗ C
γ
// C ⊗ (A⊗B)

α

��

A⊗ (C ⊗B)
α
// (A⊗ C)⊗B

γ⊗1
// (C ⊗A)⊗B
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(A⊗ I)⊗B
α //

ρ⊗1
&&

A⊗ (I ⊗B)

1⊗λ
xx

A⊗B

and
B ⊗A

β

%%

A⊗B
id

β
99

A⊗B

Example 1.2. (Set,×, {∗})

Example 1.3. IfR is commutative, then (R−mod,⊗, R) is symmetric monoidal.

Example 1.4. (Sp,∧, S0) is a symmetric monoidal category where Sp is cat-
egory of symmetric spectra, orthogonal spectra or EKMM.

Theorem 1.5. The classifying space of a symmetric monoidal category is an
E∞ space, so its group completion is an infinite loop space.

Definition 1.6. A permutative category is a unital symmetric monoidal cate-
gory where the associator α is the identity.

Theorem 1.7. Every symmetric monoidal category is equivalent to a permuta-
tive category.

2 Enriched Categories

Let (V ,⊗, I) be a monoidal category.

Definition 2.1. A small V -enriched category C consists of

1. a class Obj(C ) of objects of C ;

2. an object C (a, b) ∈ V for each pair (a, b) ∈ Obj(C )×Obj(C );

3. for each ordered triple (a, b, c) of objects of C a morphism

◦a,b,c : C (b, c)⊗ C (a, b)→ C (a, c)

in V ;

4. for each object a ∈ Obj(C ) a morphism ja : I → C (a, a);

5. such that the following diagrams commute

(C (c, d)⊗ C (b, c))⊗ C (a, b)
α //

◦b,c,d⊗1

��

C (c, d)⊗ (C (b, c)⊗ C (a, b))

1⊗◦a,b,c

��

C (b, d)⊗ C (a, b)
◦a,b,d

// C (a, d) C (c, d)⊗ C (a, c)
◦a,c,d

oo
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C (b, b)⊗ C (a, b)
◦a,b,b

// C (a, b) C (a, b)⊗ C (a, a)
◦a,a,b
oo

I ⊗ C (a, b)

jb⊗1

OO

λ

77

C (a, b)⊗ I

1⊗ja

OO

ρ

gg

Example 2.2. Set-enriched category are precisely the usual categories.

Example 2.3. Additive categories are Ab-enriched categories.

Example 2.4. Top can be regarded as a Top-enriched category.

Example 2.5. With a suitable model we can also make the category of spectra
Sp enriched in itself.

Definition 2.6. A strict 2-category is a category enriched over Cat where the
monoidal structure in Cat is given by the product of categories.

3 Spectral Mackey Functors

Elmendorf’s theorem suggests that G-spectra are categorifications of Mackey
functors. We now present a theorem that gives substance to this idea.

Regard a Mackey functor as an additive functor M : Bop
G → Ab from the

Burnside category to the category of abelian groups. Every part of this definition
has a higher algebraic counterpart. The idea is to replace Ab with the cate-
gory Sp of nonequivariant spectra, and to enhance BG to a spectrally enriched
category BG,sp that models the full, spectral subcategory of GSp spanned by
suspensions of finite pointed G-sets. We follow Guillou and May’s model cate-
gorical treatment [4], where BG,sp is denoted GA , but Barwick has proven a
similar theorem using ∞-categories [1]. An important antecedent to these re-
sults appears in earlier work of Schwede and Shipley [9, Example 3.4.(i)]. They
show that GSp is equivalent to the category of spectral presheaves over the
full subcategory of GSp spanned by {Σ∞

+ G/H |H ⊂ G}. A related result for
presentable stable ∞-categories is given in [7, Proposition 1.4.4.9].

Remark 3.1. The difference between [9] and the work in [1] and [4] is that
the latter papers construct the spectral Burnside category without reference
to equivariant homotopy theory. Barwick works over a natural ∞-categorical
lift of the Lindner category B+

G, which he does not group complete. As we
explain below, Guillou and May work over a precise spectral analogue to BG,
constructed by homotopy group completing a 2-categorical lift of B+

G.

Recall that the Lindner 1-category B+
G has finite G-sets X,Y, Z, . . . as ob-

jects, and that a morphism from X to Y in B+
G is an isomorphism class of a

span X ← U → Y of finite G-sets. The first step in constructing BG,sp is to
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remember the isomorphisms

X Y

U

U ′

∼=

between different representatives of morphisms in B+
G. It will be technically

convenient to think of a spanX ← U → Y as a single morphism U → Y ×X, and
to consider G-actions on the finite sets ∅, {1}, {1, 2}, {1, 2, 3}, . . . only. Among
other things, this cuts the proper class of finite G-sets down to a countable
set, and it makes the disjoint union and cartesian product of G-sets strictly
associative and unital. Henceforth, we understand all finite G-sets to be of this
form.

Definition 3.2. For any finite G-set A, let GE (A) be the category of finite
G-sets and G-isomorphisms over A. This is a strictly associative and unital
symmetric monoidal category (also called a permutative category) under disjoint
union.

Recall that a bicategory C is a category weakly enriched in 1-categories.
More explicitly, a bicategory consists of a class of objects Ob(C ), hom 1-
categories C (X,Y ), composition functors ◦ : C (Y,Z) × C (X,Y ) → C (X,Z),
and identities id : ∗ → C (X,X) such that the usual associative and unital laws
hold up to coherent natural isomorphism.

Definition 3.3. Let GE be the bicategory whose objects are finite G-sets, and
whose hom 1-categories are GE (X,Y ) = GE (Y ×X). Composition corresponds
to the pullback of spans, and the diagonal ∆ : X → X×X is the identity at X.

The bicategory GE is very nearly a strict 2-category. Composition is strictly
associative, and one of the unit laws holds strictly. We can make the other unit
law strict by “whiskering” on new identity elements. To be precise, if C is a
1-category with basepoint c ∈ C , then the whiskered category C ′ has:

1. objects Ob(C ′) = Ob(C ) ⊔ {∗}, and

2. hom sets C ′(x, y) = C (ε(x), ε(y)), where ε : Ob(C ′) → Ob(C ) is the
identity map on Ob(C ) and sends ∗ to the basepoint c ∈ C .

Compositions and identities in C ′ are inherited from C , and w = idc ∈ C ′(∗, c)
is a canonical “whisker isomorphism” between ∗ and c in C ′. Thus, the inclusion
C ↪→ C ′ is an equivalence of categories. We think of C ′ as a categorical analogue
to the whiskering X ′ = X ∨ [0, 1] of a based space X, but we warn the reader
that the classifying space B(C ′) is not homeomorphic to (BC )′.
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Definition 3.4. Let B+
G,2 be the strict 2-category whose objects are finite G-

sets X,Y, Z, . . . , and whose hom 1-categories are

B+
G,2(X,Y ) =

{
GE (X,X)′ if X = Y and |X| > 1
GE (X,Y ) otherwise

.

Here we regard ∆ : X → X ×X as the baspoint of GE (X,X).

The 2-category B+
G,2 is strictly associative and unital because the whisker

isomorphisms provide room to “hang” the bicategorical unit isomorphisms of
GE . We refer the reader to [4, §5] for details, where B+

G,2 is denoted GE ′.

The homs of B+
G,2 are still permutative categories, and they should be

thought of as commutative monoids up to coherent homotopy. It remains to
homotopy group complete them. We can do considerably better. Given any
permutative category C , there is a connective spectrum KC such that Ω∞KC
is a group completion of the classifying space BC (cf. [10] and [8]). The basic
idea in [10] is to construct the levels of KC using a homotopical version of the
iterated classifying space construction for topological abelian groups, but nail-
ing down the details is nontrivial. Moreover, the classical versions of KC will
not suffice for the problem at hand, because producing an honest spectral cate-
gory BG,sp from B+

G,2 requires a construction with more precise multiplicative
properties, and proving that spectral Mackey functors over BG,sp are equivalent
to G-spectra requires even more compatibilities.

Guillou, May, Merling, and Osorno have developed an “equivariant infinite
loop space machine” KG with all of the necessary properties in [5] and subse-
quent work. When G = e, the machine K = Ke

1. sends a permutative category C to a connective spectrum KC whose 0-
space is the group completion of BC , and

2. sends multilinear maps between permutative categories to multilinear maps
between spectra.

Thus, applying K to the hom categories of B+
G,2 produces a spectral category.

Definition 3.5. Let BG,sp be the spectral category whose objects are finite G-
sets X,Y, Z, . . . , and whose hom spectra are BG,sp(X,Y ) = KG(B

+
G,2(X,Y )).

A spectral Mackey functor is a contravariant spectral functor from BG,sp to Sp.
We write Macksp(G) for the category of spectral Mackey functors for G.

Using further properties of KG, Guillou and May prove that the homotopy
theory of spectral G-Mackey functors and the homotopy theory of G-spectra
are equivalent.

Theorem 3.6 ([4, Theorem 0.1]). There is a zig-zag of Quillen equivalences
connecting Macksp(G) to the category GSp of orthogonal G-spectra.

We briefly indicate some ingredients in the proof. Just as the orbits G/H
generate the homotopy theory of GTop, the suspension spectra Σ∞

+ G/H gener-
ate the homotopy theory of GSp. Let GD denote the full, spectral subcategory
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of GSp spanned by (bifibrant approximations of) the suspension spectra of finite
pointed G-sets. Then the category of spectral contravariant functors from GD
to Sp is Quillen equivalent to GSp. This is essentially Schwede and Shipley’s
theorem [9]. The rest of the proof boils down to showing that GD is suitably
equivalent to the spectral category BG,sp.

By a non-group complete version of the tom Dieck splitting, the category
B+

G,2(X,Y ) is a model for the G-fixed points of PG(Y × X)+, the free G-E∞

algebra on the basedG-set (Y×X)+. Therefore BG,sp(X,Y ) ≃ K(PG(Y×X)G+),
and compatibility relations between K and KG imply that K(PG(Y ×X)G+) ≃
KG(PG(Y ×X)+)

G. From here, the equivariant Barratt-Priddy-Quillen theorem
gives KG(PG(Y ×X)+)

G ≃ (Σ∞
+ (Y ×X))G, and by duality,

(Σ∞
+ (Y ×X))G ∼= (Σ∞

+ Y ∧ Σ∞
+ X)G ≃ FG(Σ

∞
+ X,Σ∞

+ Y )G ≃ FG(Σ∞
+ X,Σ∞

+ Y ).

Therefore BG,sp(X,Y ) ≃ GD(Σ∞
+ X,Σ∞

+ Y ).
Ignoring (co)fibrancy issues, the rest of the proof boils down to checking that

these equivalences define an equivalence BG,sp ≃ GD of spectral categories, and
that they induce an equivalence Fun(Bop

G,sp,Sp) ≃ Fun(GDop,Sp) on the level
of homotopy theories.

Example 3.7. For any finite G-set X, the representable spectral Mackey func-
tor BG,sp(−, X) ∈ Macksp(G) and the suspension G-spectrum Σ∞

+ X ∈ GSp
correspond under the equivalences of Theorem 3.6 (cf. [4, §2.5]). In particular,
BG,sp(−, G/G) correponds to the sphere G-spectrum.
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