Complex Orientation & Formal Groups

Yutao Liu

University of Chicago

IWOAT, 2022.8

Orientations on manifolds

- Orientation on manifold: continuous choice of normal vectors
- Let M be a *n*-dim, closed manifold. $x \in M$.
- Normal vectors at $x \iff$ generators of $H_n(M, M x) \cong \mathbb{Z}$.

Definition

An **orientation** on M is an element in $H_n(M)$ which is sent to a generator by the induced map $H_n(M) \to H_n(M, M - x) \cong \mathbb{Z}$ for any $x \in M$.

Orientations on vector bundles

- Let $V \rightarrow M$ is an *n*-dim vector bundle.
- Let V_x be the ventor space over x ∈ M.
 "Local orientation" ⇔ H_n(V_x, V_x − x) ≅ Z.
- Notice that $H_n(V_x, V_x x) \cong \widetilde{H}_n(Th(V_x \to \{x\}))$ natural inclusion $Th(V_x) \hookrightarrow Th(V)$

Definition

An **orientation** on $V \to M$ is an element in $\widetilde{H}^n(Th(V))$ which is sent to generator by the induced map $\widetilde{H}^n(Th(M)) \to \widetilde{H}^n(Th(V_x)) \cong \mathbb{Z}$ for any $x \in M$. Such element is called a **Thom class**.

Thom isomorphism

Assume that $V \to M$ is oriented with Thom class $c \in \widetilde{H}^n(Th(V))$. The following composition is an isomorphism:

$$H^*(M) \cong H^*(V) \xrightarrow{c \smile (-)} H^{*+n}(V, V - M) \cong \widetilde{H}^{*+n}(Th(V))$$

Let E be a commutative ring spectrum.

Definition

An *E*-orientation on $V \to M$ is an element in $\tilde{E}^n(Th(V))$ which is sent to generator (as $\pi_0 E$ -modules) by the induced map

$$\widetilde{E}^n(Th(M)) o \widetilde{E}^n(Th(V_x)) = \widetilde{E}^n(S^n) \cong \pi_0 E$$

for any $x \in M$.

Classical orientation = $H\mathbb{Z}$ -orientation

• Orientation on a manifold = orientation on its normal vector bundle.

- •
- Torus: Z-orientable & Z/2-orientable
 Klein bottle: not Z-orientable, but Z/2-orientable
- In fact, all connected real manifolds are $\mathbb{Z}/2$ -orientable.
- \implies $H^*(-;\mathbb{Z}/2)$ is "orientable"?

Idea: E is complex orientable = "all complex vector bundles are E-orientable" + "universal choice of E-orientation"

Definition

A complex orientation on E consists of one element $c_V \in \widetilde{E}^{2n}(Th(V))$ for any $n \in \mathbb{Z}^+$ and rank n complex vector bundle $V \to M$, such that (1) For any $x \in M$, c_V is mapped into a generator by

$$\widetilde{E}^{2n}(Th(V)) o \widetilde{E}^{2n}(Th(V_x)) \cong \widetilde{E}^{2n}(S^{2n}) \cong \pi_0 E$$

(2) For any map $f : N \to M$, $f^*(c_V) = c_{f^*V}$. (3) For different complex bundles V_1, V_2 over X, $c_{V_1 \oplus V_2} = c_{V_1} \cdot c_{V_2}$.

Special complex bundles

• $\mathbb{C}P^n$ = "complex lines" in \mathbb{C}^{n+1}

- Tautological bundle: O_n := {(I, z) ∈ CPⁿ × Cⁿ⁺¹ : z ∈ I}. The projection O_n → CPⁿ becomes a complex line bundle.
- $Th(\mathcal{O}_n) \simeq \mathbb{C}P^{n+1}$
- $\mathbb{C}P^0 \hookrightarrow \mathbb{C}P^1 \hookrightarrow \mathbb{C}P^2 \hookrightarrow ...$ induces $\mathcal{O}_0 \hookrightarrow \mathcal{O}_1 \hookrightarrow \mathcal{O}_2 \hookrightarrow ...$, which is exactly $\mathbb{C}P^1 \hookrightarrow \mathbb{C}P^2 \hookrightarrow \mathbb{C}P^3 \hookrightarrow ...$
- *E*-Thom classes form a sequence in $\dots \to \widetilde{E}^2(Th(\mathcal{O}_n)) \to \widetilde{E}^2(Th(\mathcal{O}_{n-1})) \to \dots \to \widetilde{E}^2(Th(\mathcal{O}_0)) \to \pi_0 E$
- which agrees with $\dots \to \widetilde{E}^2(\mathbb{C}P^{n+1}) \to \widetilde{E}^2(\mathbb{C}P^n) \to \dots \to \widetilde{E}^2(\mathbb{C}P^1) \xrightarrow{\sim} \pi_0 E$
- Let $n \to \infty$, we obtain an element in $\widetilde{E}^2(\mathbb{C}P^\infty)$, which is sent to a generator by $\widetilde{E}^2(\mathbb{C}P^\infty) \to \widetilde{E}^2(\mathbb{C}P^1) \cong \pi_0 E$

An alternative definition

Theorem

There is a natural bijection between

(1) Complex orientations of E

(2) Classes $u \in \tilde{E}^2(\mathbb{C}P^\infty)$ which restricts to an $\pi_0 E$ -module generator of $\tilde{E}^2(\mathbb{C}P^1) \cong \pi_0 E$.

- Examples:
- Ordinary cohomology HZ:

 *H*²(ℂP[∞]) ≅ *H*²(ℂP¹) ≅ ℤ

Complex K-theory KU KU⁰(X) = {isomorphism classes of complex vector bundles over X}. Bott periodicity: KU*+2(X) = KU*(X), KU⁰(ℂP¹) = ℤ[O₁]/(O₁ - 1)². The generator of KU⁰(ℂP¹) is represented by O₁ - 1. Choose O_∞ - 1 ∈ KU⁰(ℂP[∞]) as the complex orientation. (choice not unique)

Obstruction theory

- Recall: complex orientation = pre-image of a generator through $\widetilde{E}^2(\mathbb{C}P^\infty) \to \widetilde{E}^2(\mathbb{C}P^1)$
- \iff extending $\Sigma^{\infty} \mathbb{C}P^1_+ \to \Sigma^{-2}E$ to a map $\Sigma^{\infty} \mathbb{C}P^{\infty}_+ \to \Sigma^{-2}E$
- \iff extending the map from $\mathbb{C}P^1$ to maps from $\mathbb{C}P^2, \mathbb{C}P^3, ...$
- $\mathbb{C}P^2 = \mathbb{C}P^1 + 4$ cell cofiber sequence $S^3 \to \mathbb{C}P^1_+ \to \mathbb{C}P^2_+$
- Apply maps to $\Sigma^{-2}E$: ... $\leftarrow \pi_5 E \leftarrow \widetilde{E}^2(\mathbb{C}P^1) \leftarrow \widetilde{E}^2(\mathbb{C}P^2) \leftarrow ...$
- **Obstruction** in $\pi_5 E$: extension always exists if $\pi_5 E = 0$
- Similarly, the obstruction of extending a map from CPⁿ to a map from CPⁿ⁺¹ is in π_{2n+3}E.
- **Theorem:** *E* is complex orientable if its odd degree homotopy groups are trivial.
- Examples: $\pi_* H\mathbb{Z} = \mathbb{Z}$, $\pi_* KU = \mathbb{Z}[u^{\pm}]$ with |u| = 2.

Formal groups

When further studying the structure of $\tilde{E}^2(\mathbb{C}P^{\infty})$, we obtain some algebraic object called a formal group.

Definition

A formal group (law) over a ring R is a power series $F(x, y) \in R[[X, Y]]$ such that

(1)
$$F(x, y) = F(y, x)$$

(2) $F(x, 0) = F(0, x) = x$
(3) $F(F(x, y), z) = F(x, F(y, z))$

- Let F_1, F_2 be formal groups over R. A map of formal groups $f: F_1 \to F_2$ is a power series $f(x) \in R[[x]]$ such that f(0) = 0 and $f(F_1(x, y)) = F_2(f(x), f(y))$.
- f is an isomorphism if and only if f'(0) is a unit.
- Examples: Additive formal group $G_a(x, y) = x + y$ Multiplicative formal group $G_m(x, y) = x + y + xy$

Atiyah-Hirzebruch spectral sequence

For any space X and cohomology theory E, there exists a spectral sequence

$$E_2^{p,q} = H^p(X; E^q(*)) \Rightarrow E^{p+q}(X)$$

- Input: $H^*(X)$, $\pi_*E \xrightarrow{AHSS}$ Output: $E^*(X)$
- It works when E is complex orientable & X is a finite CW complex.
- When $X = \mathbb{C}P^n$, $E^*(\mathbb{C}P^n) = (\pi_*E)[t]/(t^{n+1})$
- Let $n \to \infty$, $E^*(\mathbb{C}P^{\infty}) = (\pi_*E)[[t]]$ We can choose $t \in \widetilde{E}^2(\mathbb{C}P^{\infty})$ as the given complex orientation.
- Same computation on $\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$: $E^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = (\pi_*E)[[x, y]]$
- Here x, y can be chosen as $p_1^*(t)$ and $p_2^*(t)$. $p_1, p_2 : \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$ are the projections.

- There is a natural product on $\mathbb{C}P^{\infty}$:
- $\mathbb{C}P^{\infty} \simeq BU(1)$, which classifies complex line bundles.
- There is a map $m: BU(1) \times BU(1) \rightarrow BU(1)$ representing tensor product between line bundles.
- L_1, L_2 are line bundles over X classified by $f_1, f_2 : X \to BU(1)$. Then $L_1 \otimes L_2$ is classified by $X \xrightarrow{f_1 \times f_2} BU(1) \times BU(1) \xrightarrow{m} BU(1)$
- Apply the *E*-cohomology: $m^*: (\pi_* E)[[t]] = E^*(\mathbb{C}P^{\infty}) \to E^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = (\pi_* E)[[x, y]]$
- Define a formal group by $F(x, y) = m^*(t)$.
- Different choices of orientations will give different, but isomorphic formal groups.

- Consider E = KU with the canonical orientation $\mathcal{O}_{\infty} 1$
- Notice that $\mathcal{O}_\infty \to \mathbb{C}P^\infty = BU(1)$ is the universal line bundle.
- Thus the map $BU(1) \xrightarrow{\Delta} BU(1) \times BU(1) \xrightarrow{m} BU(1)$ classifies $\mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty}$
- Consider the map $m^*: (\pi_*E)[[t]] = E^*(\mathbb{C}P^\infty) \to E^*(\mathbb{C}P^\infty \times \mathbb{C}P^\infty) = (\pi_*E)[[x, y]]$

•
$$m^*(\mathcal{O}_\infty) = \mathcal{O}_\infty \otimes \mathcal{O}_\infty$$

- $m^*(t+1) = (x+1)(y+1) \Longrightarrow m^*(t) = x+y+xy$
- Multiplicative formal group G_m on KU

- Local orientation \iff local (co)homology
- Global orientation $\iff H_n(M)$ or $H^n(Th(V))$
- *E*-orientation = universal choice of *E*-orientations on all complex bundles
- ullet \Longrightarrow determined by all tautological line bundles
- \Longrightarrow represented by an element in $\widetilde{E}^2(\mathbb{C}P^\infty)$
- Formal group encodes the (co)product on $E^*(\mathbb{C}P^\infty)$
- Coming next: universal example MU, more about formal groups