Nilpotence theorem IWoAT 2022

Weinan Lin

Peking University

Aug 24 2022

1/16

Definition

We say that a ring spectrum *E* is a field if π_*E is a graded field.

Every Morava K-theory is a field.

Conversely, if *E* is any field, then we claim that *E* has the structure of a K(n)-module for some $0 \le n \le \infty$. It suffices to show that $E \otimes K(n)$ is nonzero for some *n* because of the following.

Proposition

Let *E* be any field and suppose that $E \otimes K(n)$ is nonzero. Then *E* admits the structure of a K(n)-module.

Proposition 1

Let $\{E^{\alpha}\}$ be a collection of ring spectra. The following conditions are equivalent:

- Let R be a p-local ring spectrum. If $x \in \pi_m R$ is a homotopy class whose image in $E_m^{\alpha}(R)$ is zero for all α , then x is nilpotent in $\pi_* R$.
- 2 Let R be a p-local ring spectrum. If $x \in \pi_0 R$ is a homotopy class whose image in $E_0^{\alpha}(R)$ is zero for all α , then x is nilpotent in $\pi_0 R$.
- Let X be an arbitrary *p*-local spectrum. If $x \in \pi_0 X$ has trivial image under the Hurewicz map $\pi_0 X \to E_0^{\alpha}(X)$ for each α , then the induced class $x^{\otimes n} \in \pi_0 X^{\otimes n}$ is zero for *n* sufficiently large.
- Let X be an arbitrary p-local spectrum, and let F be a finite spectrum. If f : F → X is such that each composite map F → X → X ⊗ E₀^α is null homotopic, then f^{⊗n} : F^{⊗n} → X^{⊗n} is nullhomotopic for n sufficiently large.

Nilpotence Theorem (Devinatz, Hopkins, and Smith)

For any ring spectrum R, the kernel of the map $\pi_*R \to MU_*(R)$ consists of nilpotent elements. In particular, the single cohomology theory MUdetects nilpotence.

Corollary (Nishida)

For n > 0, every element of $\pi_n S$ is nilpotent.

This is because $\pi_n S$ is torsion and $MU_*(S) = L$ is torsion free.

Theorem 1

The spectra $\{K(n)\}_{0 \le n \le \infty}$ detect nilpotence.

We will prove that the spectra $\{K(n)\}_{0 \le n \le \infty}$ satisfy condition (3) of Proposition 1. Let T denote the homotopy colimit of the spectra

$$S \xrightarrow{x} X \xrightarrow{x} X^{\otimes 2} \xrightarrow{x} X^{\otimes 3} \xrightarrow{x} \cdots$$

Nilpotence theorem

Let $x \in \pi_0 X$ and E be any ring spectrum.

Lemma

The following conditions are equivalent

- The spectrum T is E-acyclic.
- **2** The image of $x^{\otimes n}$ in $E_0(X^{\otimes n})$ vanishes when *n* is sufficiently large.

Nilpotence theorem

We now want to prove Theorem 1. Assume the image of $x \in \pi_0 X$ in each $K(n)_0 X$ is zero. We wish to prove that some smash power $x^{\otimes n}$ is trivial.

Since K(m) satisfy the Künneth theorem, $x^{\otimes n}$ has trivial image in $K(m)_*(X^{\otimes n})$ if and only if x has trivial image in $K(m)_*(X)$. Consequently, we have a more precise result for a homotopy class $x \in \pi_0 X$ for a *p*-local spectrum X:

Proposition

the $x^{\otimes n} \in \pi_0 X^{\otimes n}$ is zero for *n* sufficiently large *if and only if* the image of x in $K(m)_*(X)$ vanishes for all *m*.

Remark

We can drop the requirement that X is p-local if we impose the same condition at all Morava K-theories (for all primes).

Now we have proved our claim:

Corollary

If E is a field, then E has the structure of a K(n)-module for some n.

Definition

Let \mathcal{T} be a full subcategory of finite *p*-local spectra. We say that \mathcal{T} is *thick* if it contains 0, is closed under the formation of fibers and cofibers, and if every retract of a spectrum belonging to \mathcal{T} also belongs to \mathcal{T} .

Proposition

Let \mathcal{T} be a thick subcategory of finite *p*-local spectra. If $X \in \mathcal{T}$ and Y is any finite *p*-local spectrum, then $X \otimes Y \in \mathcal{T}$.

Thick Subcategory Theorem

Let \mathcal{T} be a thick subcategory of finite *p*-local spectra. Then $\mathcal{T} = C_{\geq n}$ for some $0 \leq n \leq \infty$.

Thick Subcategory Theorem

The Thick Subcategory Theorem is equivalent to the following proposition.

Proposition

Let \mathcal{T} be a thick subcategory containing a type *n* spectrum *X*. If *Y* is a spectrum of type $\geq n$, then $Y \in \mathcal{T}$.

Let *DX* denote the (*p*-local) Spanier-Whitehead dual of *X*. Then the map $e: S_{(p)} \to X \otimes DX$ induces an injection

 $\mathcal{K}(m)_*(\mathcal{S}_{(p)}) o \mathcal{K}(m)_*(X \otimes DX) \cong \mathcal{K}(m)_*(X) \otimes_{\mathbb{F}_p[v_m^{\pm 1}]} \mathcal{K}(m)_*(X)^{\vee}$

Consider the fiber sequence

$$F \xrightarrow{f} S_{(p)} \to X \otimes DX.$$

If follows that the map $K(m)_*F \to K(m)_*(S_{(p)})$ is zero for $m \ge n$. Consider the composite

$$g: F \xrightarrow{f} S_{(p)} \to Y \otimes DY$$

Then $g_* : K(m)_*F \to K(m)_*(Y \otimes DY)$ is trivial for both $m \ge n$ and m < n (because Y has type $\ge n$, so that $K(m)_*(Y \otimes DY) \cong 0$.)

By the nilpotence theorem, we conclude that some smash power

$$F^{\otimes k} o (Y \otimes DY)^{\otimes k}.$$

is null homotopic. Composing with the multiplication on $Y \otimes DY$ we get a nullhomotopic map

$$F^{\otimes k} \to Y \otimes DY.$$

which correspond to the composition

$$F^{\otimes k} \otimes Y \xrightarrow{f} F^{\otimes k-1} \otimes Y \xrightarrow{f} \cdots \to Y.$$

It follows that Y is a retract of the cofiber $Y/(F^{\otimes k} \otimes Y)$. Consequently, to show that $Y \in \mathcal{T}$, it suffices to show that $Y/(F^{\otimes k} \otimes Y) \in \mathcal{T}$. Since \mathcal{T} is closed in the formation of cofiber and fiber, it suffices to show that $(F^{\otimes a} \otimes Y)/(F^{\otimes a+1} \otimes Y) \in \mathcal{T}$ for $a = 0, 1, \ldots, k - 1$. In fact, each of them has the form

$$F^{\otimes a} \otimes Y \otimes (S_{(p)}/F) \simeq F^{\otimes a} \otimes Y \otimes DX \otimes X$$

and therefore belong to \mathcal{T} since $X \in \mathcal{T}$.

Lurie's lecture notes: https://www.math.ias.edu/~lurie/252xnotes/Lecture26.pdf https://www.math.ias.edu/~lurie/252xnotes/Lecture27.pdf

Thank You!