Construction of v_n -self maps

Yutao Liu

University of Chicago

IWOAT, 2022.8

Yutao Liu (University of Chicago)

Construction of v_n -self maps

- Jacob Lurie's notes on chromatic homotopy theory (lecture 27): https://people.math.harvard.edu/ \sim lurie/252x.html
- D. C. Ravenel: "Nilpotence and Periodicity in Stable Homotopy Theory", chapters 6, B, C.
- D. C. Ravenel: "Complex Cobordism and Stable Homotopy Groups of Spheres", chapters 2, 4.

Introduction

- Everything is *p*-local in this talk. $H^*(-)$ will denote $H^*(-; \mathbb{Z}/p)$.
- Morava K-theory K(n): $K(n)_* = \mathbb{Z}/p[v_n^{\pm}]$, $|v_n| = 2p^n 2$.
- A finite spectrum X has **type n** if n is the smallest integer such that $\overline{K(n)}_*(X) \neq 0$.
- Q: Does there exist type n spectra for any $n \ge 0$?
- Q: Is there a systematic way to constuct type n spectra?
- S has type 0.
- Consider $S \xrightarrow{\rho} S \to V(1)$. Then V(1) has type 1
- (Adams-Toda) When p ≥ 3, there exists a self-map on V(1) which induces v₁ · (−) in K(1)-homology. The cofiber V(2) has type 2.
- (Smith-Toda) When p ≥ 5, there exists a self-map on V(2) which induces v₂ · (−) in K(2)-homology. The cofiber V(3) has type 3.
- (Smith-Toda) When $p \ge 7$, V(4) has type 4. (STOP HERE)

Definition

Let X be a finite spectrum. A self-map $f : \Sigma^d X \to X$ is called as a v_n -map if $K(n)_*(f)$ is an isomorphism and $K(m)_*(f)$ is nilpotent if $m \neq n$.

- If X has type n, then the cofiber of a v_n -map has type n + 1.
- If type< n, no v_n-maps.
 If type> n, the trivial map is a v_n-map.
- Any power of a v_n -map is still a v_n -map.
- Some power of f induces the multiplication of some power of v_n (up to a multiple) in K(n)-homology.

 \Leftarrow End_{K(n)*}(K(n)*X) is a finitely generated K(n)*-module

We can replace the "nilpotent" by "trivial"
 ⇐ K(m)_{*}(f) = 0 when both |v_m| and |f| is greater than the dimension of the top cell in X.

Theorem (Hopkins-Smith)

Let X, Y be type n finite spectra with v_n -maps f, g. For any map $h: X \to Y$, there exist i, j > 0 such that (1) i|f| = j|g| (denoted by d); (2) The following diagram commutes up to homotopy

- The *v_n*-maps are **compatible** with maps between type *n* spectra up to powers.
- When $h = id_X$, the v_n -maps on X are **unique** up to powers.

Proof of uniqueness

- Let $f,g \in [\Sigma^*X,X]$ be v_n -maps. Assume that |f| = |g|.
- Replace f, g by some powers of themselves so that $K(n)_*(f) = K(n)_*(g)$ as a multiplication of some power of v_n .
- $K(m)_*(f g) = 0$ for all m
- Nilpotence Theorem $\implies f g$ is nilpotent \implies $(f - g)^{p^i} = 0$ for some $i \implies f^{p^i} = g^{p^i} + ph$
- X is p-local and finite $\Longrightarrow [\Sigma^*X, X]$ only contains p-torsion in high degrees.
- $f^{p^{i+k}} = (g^{p^i} + ph)^{p^k} = g^{p^{i+k}}$ when k is large enough.
- (Lemma: Let R be a ring of p-torsion. $f \in R$ such that the action $f \cdot (-) (-) \cdot f$ on R is nilpotent. Then some power of f is in the center of R.)

Theorem (Hopkins-Smith)

Any finite *p*-local type *n* spectrum has a v_n -map.

- Idea of the proof:
- Thick Subcategory Theorem: All thick subcategories of finite p-local spectra are $\{pt\} \subset ... \subset \mathscr{F}_{n+1} \subset \mathscr{F}_n \subset ... \subset \mathscr{F}_0$, such that \mathscr{F}_n consists of all spectra with type $\geq n$.
- Let \mathbb{V}_n as the subcategory of all spectra admitting v_n -maps. Then $\mathscr{F}_{n+1} \subset \mathbb{V}_n \subset \mathscr{F}_n$, while we want to show $\mathbb{V}_n = \mathscr{F}_n$
- It suffices to show: (1) V_n is thick; (2) Some special type n spectrum admits a v_n-map.

• \mathbb{V}_n is closed under taking cofibers:

- \mathbb{V}_n is closed under taking summands:
- Let f be a v_n -map on $X \vee Y$.
- Assume that f commutes with $X \lor Y \to X \to X \lor Y$.
- The composite

$$\Sigma^d X o \Sigma^d (X \vee Y) \xrightarrow{f} X \vee Y o X$$

becomes a *v_n*-map.

NOT NOW!

Theorem

For any finite spectrum X, there is a unique finite spectrum DX (the **Spanier-Whitehead dual** of X) such that

(1) $X \mapsto DX$ is contravariant and symmetric monoidal. $DDX \simeq X$. (2) Adjunction: $[X \land Y, Z] \cong [Y, DX \land Z]$.

• For K(n)-homology, we have

$$Hom_{K(n)_*}(K(n)_*X, K(n)_*Y) \cong K(n)_*(DX \wedge Y)$$

A self-map f ∈ [Σ*X, X] corresponds to f̂ ∈ π_{*}(DX ∧ X). The composition of maps is induced by the product on DX ∧ X:

$$DX \land X \land DX \land X \xrightarrow{id \land \epsilon \land id} DX \land S \land X = DX \land X$$

• We want some $\hat{f} \in \pi_*(DX \wedge X)$ such that $K(n)_*(\hat{f})$ is a unit element, and $K(m)_*(\hat{f}) = 0$ for m > n.

Theorem (Adams)

For any p-local finite spectrum R, there exists a spectral sequence

$$E_2^{s,t} = Ext_{\mathcal{A}}^{s,t}(H^*(R), \mathbb{Z}/p) \Longrightarrow \pi_{s+t}(R).$$

Here \mathcal{A} is the mod p Steenrod algebra.

- The computation is EXTREMELY hard in general.
- How to make it easier?
- if $H^*(R)$ is a free \mathcal{A} -module?
- if $H^*(R)$ is a free module over some subalgebras of \mathcal{A} ?
- AND replacing A by those subalgebras does not affect the degrees we are considering?

Structure of ${\cal A}$

From now on, we will assume that p is an odd prime.

Theorem (Milnor)

The dual Steenrod algebra can be expressed

$$\mathcal{A}_* = \mathbb{Z}/p[\xi_1, \xi_2, \ldots] \otimes E(\tau_0, \tau_1, \ldots)$$

with $|\xi_i| = 2p^i - 2$ and $|\tau_i| = 2p^i - 1$. The coproduct is given by

$$\Delta(\xi_n) = \sum_{0 \le i \le n} \xi_{n-i}^{p'} \otimes \xi_i$$

$$\Delta(\tau_n) = \tau_n \otimes 1 + \sum_{0 \le i \le n} \xi_{n-i}^{p^i} \otimes \tau_i$$

Let P_t^s , Q_i be the dual elements of $\xi_t^{p^s}$ and τ_i for any $t > s \ge 0$ and $i \ge 0$. We have $(P_t^s)^p = Q_i^2 = 0$.

Construction of v_n -self maps (again)

We want some type *n* spectrum *X* such that both $\pi_*(DX \land X)$ and $K(n)^*(DX \land X)$ are not too hard to compute:

Definition

A *p*-local finite spectrum X is **strongly type n** if (a) $H^*(X)$ is a free module under $\mathbb{Z}/p[P_t^s]/(P_t^s)^p$ and under $E(Q_i)$ for any $s + t \le n$ and i < n. (b) The AHSS computing $K(n)^*X$ collapses.

Problem: conditions too strong!

Definition

A *p*-local finite spectrum X is **partially type n** if (a) P_t^s and Q_i act non-trivially on $H^*(X)$ for any $s + t \le n$ and i < n. (b) The AHSS computing $K(n)^*X$ collapses.

- (1) Strongly type *n* implies type *n*.
- (2) Existence of a v_n -map on a strongly type n spectrum.
- (3) A machine which transfer a partially type *n* spectrum to a strong one.
- (4) An example of a partially type *n* spectrum.
- (1) can be proved by studying the AHSS on K(m)-cohomology and the action of Q_m .
- (4): $B = B\mathbb{Z}/p$. Let B^k be its k-skeleton. Then the cofiber of $B^2 \hookrightarrow B^{2p^n}$ is partially type n.
- We will sketch the proofs of (2) and (3).

- We need a connection between Adams SS and Morava K-theory:
- k(n): connective Morava K-theory.
- k(n)_{*} = ℤ/p[v_n], can be obtained by removing all generators except v_n in BP_{*}.
- $H^*(k(n)) = \mathcal{A}/(Q_n).$
- The Adams SS for k(n) collapses:

$$E_2^{*,*} = \mathsf{Ext}_{\mathcal{A}}^{*,*}(\mathcal{A}/\mathcal{Q}_n,\mathbb{Z}/p) \cong \mathsf{Ext}_{\mathsf{E}(\mathcal{Q}_n)}^{*,*}(\mathbb{Z}/p,\mathbb{Z}/p) = \mathbb{Z}/p[v_n]$$

• Assume X to be strongly type n. Let $R = DX \wedge X$. Consider the diagram:

- Partial: P^t_s, Q_i act non-trivially on H^{*}(X)
 Strong: P^t_s, Q_i act freely on H^{*}(X)
- Consider the action of one fixed P_s^t or Q_i . Write $H^*(X) = F \oplus T$, where F, T are the free and "torsion" parts.
- We can assume F to be non-trivial, otherwise replace X by $X^{\wedge m}$ for large m
- $\leftarrow (P_s^t)^p = Q_i^2 = 0$ and Cartan formula
- Keep F and remove $T \Leftarrow$ Smith construction

Smith construction

- There is a natural action of $\mathbb{Z}_{(p)}[\Sigma_k]$ on $X^{\wedge k}$.
- Assume that e ∈ Z_(p)[Σ_k] is idempotent. Let eX^{∧k} be the direct limit of X^{∧k} → X^{∧k} → Define (1 − e)X^{∧k} similarly (1 − e is also idempotent).

$$ullet \Longrightarrow X^{\wedge k} \simeq e X^{\wedge k} \lor (1-e) X^{\wedge k}$$

- On cohomology, $H^*(X)^k \cong eH^*(X)^k \oplus (1-e)H^*(X)^k$.
- Recall $H^*(X) = F \oplus T$. $H^*(eX^{\wedge k}) = eT^k \oplus F'$, where F' is free.
- It suffices to find proper k and e, such that $eT^k = 0$.

Theorem

Let V be a non-trivial \mathbb{Z}/p -vector space. There exists k > 0 and idempotent element $e_{k,V} \in \mathbb{Z}_{(p)}[\Sigma_k]$, such that for any $U \subset V$, $e_{k,V}U^k$ is non-trivial if and only if U = V.

(The conditions on U will be slightly different when V is graded.)