Construction of v_n -self maps

Yutao Liu

University of Chicago

IWOAT, 2022.8

Yutao Liu (University of Chicago) [Construction of](#page-18-0) v_n-self maps **IWOAT**, 2022.8 1/19

- Jacob Lurie's notes on chromatic homotopy theory (lecture 27): https://people.math.harvard.edu/∼lurie/252x.html
- D. C. Ravenel: "Nilpotence and Periodicity in Stable Homotopy Theory", chapters 6, B, C.
- D. C. Ravenel: "Complex Cobordism and Stable Homotopy Groups of Spheres", chapters 2, 4.

Introduction

- Everything is p-local in this talk. $H^*(-)$ will denote $H^*(-; \mathbb{Z}/p)$.
- Morava K-theory $K(n)$: $K(n)_* = \mathbb{Z}/p[v_n^{\pm}], |v_n| = 2p^n 2$.
- A finite spectrum X has type **n** if *n* is the smallest integer such that $K(n)_*(X) \neq 0.$
- \bullet Q: Does there exist type *n* spectra for any $n \geq 0$?
- Q: Is there a systematic way to constuct type *n* spectra?
- \bullet S has type 0.
- Consider $S \stackrel{p}{\rightarrow} S \rightarrow V(1)$. Then $V(1)$ has type 1
- (Adams-Toda) When $p > 3$, there exists a self-map on $V(1)$ which induces $v_1 \cdot (-)$ in $K(1)$ -homology. The cofiber $V(2)$ has type 2.
- (Smith-Toda) When $p > 5$, there exists a self-map on $V(2)$ which induces $v_2 \cdot (-)$ in K(2)-homology. The cofiber V(3) has type 3.
- (Smith-Toda) When $p \ge 7$, $V(4)$ has type 4. (STOP HERE)

Definition

Let X be a finite spectrum. A self-map $f : \Sigma^d X \to X$ is called as a v_n-map if $K(n)_*(f)$ is an isomorphism and $K(m)_*(f)$ is nilpotent if $m \neq n$.

- **If** X has type n, then the cofiber of a v_n -map has type $n + 1$.
- **If type** \lt n, no v_n -maps. If type $>n$, the trivial map is a v_n -map.
- Any power of a v_n -map is still a v_n -map.
- \bullet Some power of f induces the multiplication of some power of v_n (up to a multiple) in $K(n)$ -homology.

 \Longleftarrow $\mathsf{End}_{\mathcal{K}(n)_{*}}(\mathcal{K}(n)_{*}\mathcal{X})$ is a finitely generated $\mathcal{K}(n)_{*}$ -module

• We can replace the "nilpotent" by "trivial" \iff $K(m)_*(f) = 0$ when both $|v_m|$ and $|f|$ is greater than the dimension of the top cell in X .

Theorem (Hopkins-Smith)

Let X, Y be type *n* finite spectra with v_n -maps f, g . For any map $h: X \to Y$, there exist $i, j > 0$ such that (1) $i|f| = i|g|$ (denoted by d); (2) The following diagram commutes up to homotopy

$$
\sum_{\begin{subarray}{c}\n\downarrow \\
\downarrow \\
X\n\end{subarray}} \sum_{\begin{subarray}{c}\n\downarrow \\
\downarrow \\
\downarrow \\
Y\n\end{subarray}} \sum_{\begin{subarray}{c}\n\downarrow \\
\downarrow \\
Y\n\end{subarray}} \sum_{\begin{subarray}{c}\n\downarrow \\
\downarrow \\
Y\n\end{subarray}} \sum_{\begin{subarray}{c}\n\downarrow \\
\downarrow \\
Y\n\end{subarray}}
$$

• The v_n -maps are **compatible** with maps between type *n* spectra up to powers.

• When $h = id_X$, the v_n -maps on X are **unique** up to powers.

Proof of uniqueness

- Let $f, g \in [\Sigma^* X, X]$ be v_n -maps. Assume that $|f| = |g|$.
- Replace f, g by some powers of themselves so that $K(n)_*(f) = K(n)_*(g)$ as a multiplication of some power of v_n .
- $K(m)_*(f g) = 0$ for all m
- Nilpotence Theorem \implies f g is nilpotent \implies $(f-g)^{p^i}=0$ for some $i\Longrightarrow f^{p^i}=g^{p^i}+ph$
- X is p-local and finite \implies $[\Sigma^* X, X]$ only contains p-torsion in high degrees.
- $f^{p^{i+k}} = (g^{p^i} + ph)^{p^k} = g^{p^{i+k}}$ when k is large enough.
- (Lemma: Let R be a ring of p-torsion. $f \in R$ such that the action $f \cdot (-) - (-) \cdot f$ on R is nilpotent. Then some power of f is in the center of R .)

Theorem (Hopkins-Smith)

Any finite p-local type n spectrum has a v_n -map.

- Idea of the proof:
- **Thick Subcategory Theorem:** All thick subcategories of finite p-local spectra are $\{pt\} \subset ... \subset \mathscr{F}_{n+1} \subset \mathscr{F}_n \subset ... \subset \mathscr{F}_0$, such that \mathscr{F}_n consists of all spectra with type $\geq n$.
- Let V_n as the subcategory of all spectra admitting V_n -maps. Then $\mathscr{F}_{n+1} \subset \mathbb{V}_n \subset \mathscr{F}_n$, while we want to show $\mathbb{V}_n = \mathscr{F}_n$
- If suffices to show: (1) \mathbb{V}_n is thick; (2) Some special type *n* spectrum admits a v_n -map.

 \bullet V_n is closed under taking cofibers:

- \bullet \mathbb{V}_n is closed under taking summands:
- Let f be a v_n -map on $X \vee Y$.
- Assume that f commutes with $X \vee Y \rightarrow X \rightarrow X \vee Y$.
- The composite

$$
\Sigma^d X \to \Sigma^d (X \vee Y) \stackrel{f}{\to} X \vee Y \to X
$$

becomes a v_n -map.

NOT NOW!

Theorem

For any finite spectrum X, there is a unique finite spectrum DX (the **Spanier-Whitehead dual of X)** such that

(1) $X \mapsto DX$ is contravariant and symmetric monoidal. DDX $\simeq X$. (2) Adjunction: $[X \wedge Y, Z] \cong [Y, DX \wedge Z]$.

• For $K(n)$ -homology, we have

$$
Hom_{K(n)_*}(K(n)_*X, K(n)_*Y) \cong K(n)_*(DX \wedge Y)
$$

A self-map $f \in [\Sigma^* X, X]$ corresponds to $\hat{f} \in \pi_*(DX \wedge X)$. The composition of maps is induced by the product on $DX \wedge X$:

$$
DX \wedge X \wedge DX \wedge X \xrightarrow{id \wedge \epsilon \wedge id} DX \wedge S \wedge X = DX \wedge X
$$

• We want some $\hat{f} \in \pi_*(DX \wedge X)$ such that $K(n)_*(\hat{f})$ is a unit element, and $K(m)_*(\hat{f}) = 0$ for $m > n$.

Theorem (Adams)

For any p-local finite spectrum R , there exists a spectral sequence

$$
E_2^{s,t} = Ext^{s,t}_A(H^*(R),\mathbb{Z}/p) \Longrightarrow \pi_{s+t}(R).
$$

Here A is the mod p Steenrod algebra.

- The computation is EXTREMELY hard in general.
- **e** How to make it easier?
- if $H^*(R)$ is a free A-module?
- if $H^*(R)$ is a free module over some subalgebras of A ?
- AND replacing $\mathcal A$ by those subalgebras does not affect the degrees we are considering?

Structure of A

From now on, we will assume that p is an odd prime.

Theorem (Milnor)

The dual Steenrod algebra can be expressed

$$
\mathcal{A}_*=\mathbb{Z}/p[\xi_1,\xi_2,...]\otimes E(\tau_0,\tau_1,...)
$$

with $|\xi_i|=2p^i-2$ and $|\tau_i|=2p^i-1.$ The coproduct is given by

$$
\Delta(\xi_n)=\sum_{0\leq i\leq n}\xi_{n-i}^{p^i}\otimes\xi_i
$$

$$
\Delta(\tau_n)=\tau_n\otimes 1+\sum_{0\leq i\leq n}\xi_{n-i}^{p^i}\otimes \tau_i
$$

Let P_t^s, Q_i be the dual elements of $\xi_t^{p^s}$ and τ_i for any $t > s \geq 0$ and $i \geq 0.$ We have $(P_t^s)^p = Q_i^2 = 0$.

Construction of v_n -self maps (again)

We want some type *n* spectrum X such that both $\pi_*(DX \wedge X)$ and $K(n)^*(DX \wedge X)$ are not too hard to compute:

Definition

A p-local finite spectrum X is strongly type n if (a) $H^*(X)$ is a free module under $\mathbb{Z}/p[P_t^s]/(P_t^s)^p$ and under $E(Q_i)$ for any $s + t \leq n$ and $i < n$. (b) The AHSS computing $K(n)^*X$ collapses.

Problem: conditions too strong!

Definition

A p-local finite spectrum X is **partially type n** if (a) P_t^s and Q_i act non-trivially on $H^*(X)$ for any $s + t \leq n$ and $i < n$. (b) The AHSS computing $K(n)^*X$ collapses.

- \bullet (1) Strongly type *n* implies type *n*.
- (2) Existence of a v_n -map on a strongly type *n* spectrum.
- \bullet (3) A machine which transfer a partially type *n* spectrum to a strong one.
- (4) An example of a partially type *n* spectrum.
- \bullet (1) can be proved by studying the AHSS on $K(m)$ -cohomology and the action of Q_m .
- (4): $B = B\mathbb{Z}/p$. Let B^k be its k-skeleton. Then the cofiber of $B^2\hookrightarrow B^{2p^n}$ is partially type n.
- We will sketch the proofs of (2) and (3).
- We need a connection between Adams SS and Morava K-theory:
- $k(n)$: connective Morava K-theory.
- $k(n)_{*} = \mathbb{Z}/p[v_{n}]$, can be obtained by removing all generators except v_n in BP_* .
- $H^*(k(n)) = \mathcal{A}/(Q_n).$
- The Adams SS for $k(n)$ collapses:

$$
E_2^{*,*} = Ext^{*,*}_{\mathcal{A}}(\mathcal{A}/Q_n,\mathbb{Z}/p) \cong Ext^{*,*}_{E(Q_n)}(\mathbb{Z}/p,\mathbb{Z}/p) = \mathbb{Z}/p[\nu_n]
$$

Assume X to be strongly type n. Let $R = DX \wedge X$. Consider the diagram:

- Partial: P_s^t , Q_i act non-trivially on $H^*(X)$ Strong: P_s^t , Q_i act freely on $H^*(X)$
- Consider the action of one fixed P_s^t or Q_i . Write $H^*(X) = F \oplus T$, where F, T are the free and "torsion" parts.
- We can assume F to be non-trivial, otherwise replace X by $X^{\wedge m}$ for large m
- $\Longleftarrow (P_s^t)^p = Q_i^2 = 0$ and Cartan formula
- Keep F and remove $T \leftarrow$ Smith construction

Smith construction

- There is a natural action of $\mathbb{Z}_{(p)}[\Sigma_k]$ on $X^{\wedge k}.$
- Assume that $e \in \mathbb{Z}_{(p)}[\Sigma_k]$ is idempotent. Let $eX^{\wedge k}$ be the direct limit of $X^{\wedge k} \stackrel{e}{\rightarrow} X^{\wedge k} \stackrel{e}{\rightarrow}$ Define $(1-e)X^{\wedge k}$ similarly $(1-e$ is also idempotent).
- $\Longrightarrow X^{\wedge k} \simeq e X^{\wedge k} \vee (1-e) X^{\wedge k}$
- On cohomology, $H^*(X)^k \cong eH^*(X)^k \oplus (1-e)H^*(X)^k$.
- Recall $H^*(X) = F \oplus T$. $H^*(eX^{\wedge k}) = eT^k \oplus F'$, where F' is free.
- It suffices to find proper k and e, such that $eT^k = 0$.

Theorem

Let V be a non-trivial \mathbb{Z}/p -vector space. There exists $k > 0$ and idempotent element $e_{k,\,V}\in \mathbb{Z}_{(p)}[\Sigma_k]$, such that for any $\,U\subset V$, $\,e_{k,\,V}\,U^k\,$ is non-trivial if and only if $U = V$.

(The conditions on U will be slightly different when V is graded.)