Derived categories, triangulated cotegories & t-structures
I. Derived costs & triangulated costs
(classical setting) A: Abelian cat Ch(A): Cast of cochains in A $obj: X^{\circ}: \dots \to X^{\circ} \to X^{\circ} \to X^{\circ} \to X^{\circ} \to X^{\circ}$ Cohomology: H°(X°) Quasi-isomorphism: $f^{\circ}: X^{\circ} \to Y^{\circ}$ is a
quasi-iso if $H^{\circ}(f^{\circ})$ is an iso. $Ch(A) \xrightarrow{localize \ out \ quasi-iso} D(A)$ $denived \ cat \ cf \ A$
variations Ch ⁺ (A) Ch ⁻ (A) Ch ^b (A) bounded from below above both sides
SH: stable (nomotopy cottegory

Spec localise at stable w.e. SH
triangulated categories (abbr. \triangle cot) a tool to describle the structure inherent in DCA; or SH
D: additive cottegory translation Def (shift functor) E13 $/\Sigma: D \rightarrow D$ an additive customorphism.
Vef (distinguished triangles) exact $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X \in D$
Def (Δ cat) 1) an additive cat D with a shift functor Σ 2) a class of exact Δ in D satisfying the following axionas.

TRI 1) (identity) $X \xrightarrow{id} X \rightarrow 0 \rightarrow is \alpha \bigtriangleup$ 2) (completion) $\forall X \xrightarrow{f} Y, \exists z fitting into \alpha \bigtriangleup : X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Xi X3) 2 \bigtriangleup oure closed under iso$
TR2 (rotation) $z_{f} x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} \Sigma x$ is $\alpha \bigtriangleup$ then $y \xrightarrow{g} z \xrightarrow{h} \Sigma x \xrightarrow{s} f \Sigma y$ are \bigtriangleup . $z^{-1}z \xrightarrow{z^{-1}h} x \xrightarrow{f} y \xrightarrow{g} z$
TR3 (weak functoniality)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\square Qure \bigtriangleup, \square commutes \square \exists \{w s.t. \\ everything$
TR 4 (octahedral axiom)
$\frac{2^{1}}{1}$ If $\mathcal{D} \otimes \mathcal{D}$ are Δ
Y $Y^{(2)}$ $raise \oplus$ and it's \triangle .
122 and everything 2.
· · · · · · · · · · · · · · · · · · ·

Example of \triangle costs :
D(A), $D^{\pm,b}(A)$, SH $\Xi : shift$ $\Sigma : hift$ $\Sigma : \Lambda S^{\perp}$ $\Delta : exact sequences$ $\Delta : cofiber / fiber sequences$
propeties $(7 \times -) \times (-) \xrightarrow{z} \times \times$
2) $Hom_{c}(E, -)$ takes \triangle to a LES.
exercises: prove is z). (Using Z)) prove fliet in TR12), Z is unique up to isomorphism.
usamin 2 is unique up to nonanique iso.
TR3 = { is not anique.
$TR 3 : \{ is not anique, \\ X \rightarrow Y \rightarrow Z \rightarrow \Sigma X \\ u \downarrow Q \downarrow v \qquad \downarrow w \qquad J \Xi u \\ x' \rightarrow Y' \rightarrow Z' \rightarrow \Sigma X' $
$TR 3 = \begin{cases} is not unique, \\ X \rightarrow Y \rightarrow Z \rightarrow \Sigma X \\ u \downarrow Q \downarrow V \qquad \downarrow W \qquad (\Sigma u \\ X' \rightarrow Y' \rightarrow Z' \rightarrow \Sigma X' \\ E_X \qquad A \rightarrow O \rightarrow \Sigma A \rightarrow \Sigma A \\ \downarrow Q \downarrow \downarrow \downarrow L \qquad \downarrow L \qquad L \qquad L \qquad L \qquad L \qquad L \qquad L \qquad$
$TR 3 = \begin{cases} is not unique, \\ x \rightarrow y \rightarrow z \rightarrow \Sigma X \\ u \downarrow Q \downarrow v \qquad \downarrow w \qquad \int \Sigma u \\ x' \rightarrow y' \rightarrow z' \rightarrow \Sigma X' \\ Ex \qquad A \rightarrow O \rightarrow \Sigma A \rightarrow \Sigma A \end{cases}$

DhDis a scategory E) cof in D is essentially unique
I Derived categories chigher categorical)
Ref Larie Fligher Algobra Section 1.3.
A: Abelian cost $D^{-}(A): a - cost of (bold) s derived cost of A$
roughly: obj: proj & right bold chain cplx 1-monph: maps of chain cplx 2-monph: chain homotopies
$\begin{array}{ccc} cdvom & \rightarrow & \chi^n \rightarrow & \chi^{n+1} \rightarrow & \chi^{n+2} \rightarrow & (eft \\ fight bdd \\ livin & \rightarrow & \chi_n \rightarrow & \chi_{n-1} \rightarrow & \chi_{n-2} \rightarrow & & \\ \end{array}$
Sketch construction:
A monor apropriate full sub of propriotoj monor characteristic and chain cplx monor make chicApropriet envicted over chicAb)

$(h(Ab) \xrightarrow{\geq 0} Ch(Ab)_{\geq 0} \xrightarrow{bK} Abs \xrightarrow{U} Set_{s}$
mo ChicAproj) enriched over Sets
$ N : Cost_{S} \rightarrow Set_{S} $ $ Chi(Agroj) \mapsto \tilde{D}(A) $
Rink: In HA its another construction Ndg, but equivalent.
Dub-ca, is classical derived car
D ⁻ (A) is stable on - cent
$IIt-str. \sigma A costs$
ian
Vef. (t-str)
is a pair of full sub carts
(Dzo, Deo), closed under iso

2) $\Sigma D_{20} \subseteq D_{20}$, $\Sigma^{-1} D_{20} \subseteq D_{20}$
3) $\forall X \in D_{\geq 0}$, $\forall Y \in D_{\leq 0}$ $H_{om}(X, \Sigma^{-1}Y) = D$.
4) $\forall z \in D$, $\exists a \bigtriangleup$ $\chi \rightarrow z \rightarrow \chi \rightarrow$
\overline{D}_{z0} $\overline{z}^{-1}\overline{D}_{\leq 0}$
Notoctions
$D \ge n := \Sigma^n D \ge 0$ $D \le n := \Sigma^{-n} D \le 0$ $D^{\infty} := D_{\ge 0} \cap D \le 0$
Examples
j j(A)
$D(A)_{\geq 0} = \{x \mid H_{z}(X) \text{ concentrates in } \geq 0\}$ $D(A)_{\leq 0} = \{x \mid i = i - \leq 0\}$ $D(A)_{\leq 0} = A$
2) SH clostnikov t-str.)
$SH_{>0} = \{X \mid \pi_{z}(X) \text{ concentrates in } z > 0 \}$ $SH_{\leq 0} = \{X \mid$

SH ^{C7} = Ab
trancation functor
Trn: colocalization wit Drn TEn: localization wit Drn In Ex2) Trn mon n-th connective cover TEN mon u-th cornective cover.
Application : get -filterred = bjs
$\dots \rightarrow T \ge n \xrightarrow{X} \rightarrow T \ge n-1 \xrightarrow{X} \rightarrow T \ge n-1 \xrightarrow{X} \rightarrow \dots$ Use it to define SS. $\underbrace{In \ Ex \ 2)}_{i} : gives \ flie \ Fostnikov \ tower$
In the stable
t-str. In stable 00-cat is defined by passing to the homotopy contegory. -t-str on D-(A)
(D(A)zo, D(A)co) defined as in Exi)
$\nabla^{-}(A)^{\vee} = N(A)$

(universal property) enough A: Abelian car with proj left comple stable co-cout, with t-str. e : $E \subseteq Fun(D(A), C)$ full sub cont spound by <u>right t-exact</u> which functors sends $\mathcal{O}^{\dagger}(\mathcal{A}) \to \mathcal{C}$ e[®]. +0 > (A)>0-> right exact O DA \wedge tun (A $\left| \mathcal{A} \right\rangle$ (+)Compare it to the dassional result: F: A -> B right exact functor of Ab cats A has enough projectives can define LF = DA > DB Teft derived function