Chain-level models of equivariant topological Hochschild homology in positive characteristic

Po Hu

Wayne State University

March 7, 2025

Po Hu Chain models for THH(R)

Outline

- Joint with V. Burghardt, I. Kriz, P. Somberg
- For an \mathbb{F}_p -algebra R, its \mathbb{Z}/p^r -equivariant topological Hochschild homology $THH_{\mathbb{Z}/p^r}(R)$ is a module over the E_{∞} -algebra $TR(\mathbb{F}_p) = H\mathbb{Z}_p$, where \mathbb{Z}_p is the constant \mathbb{Z}/p^r -Mackey functor for the ring \mathbb{Z}_p
- There is an equivalence between the derived category of $H\mathbb{Z}_{p}$ -modules and the derived category of \mathbb{Z}_{p} -module Mackey functors

Outline

- Joint with V. Burghardt, I. Kriz, P. Somberg
- For an \mathbb{F}_p -algebra R, its \mathbb{Z}/p^r -equivariant topological Hochschild homology $THH_{\mathbb{Z}/p^r}(R)$ is a module over the E_{∞} -algebra $TR(\mathbb{F}_p) = H\mathbb{Z}_p$, where \mathbb{Z}_p is the constant \mathbb{Z}/p^r -Mackey functor for the ring \mathbb{Z}_p
- There is an equivalence between the derived category of $H\mathbb{Z}_p$ -modules and the derived category of \mathbb{Z}_p -module Mackey functors

This talk: For a quasi-smooth semiperfect \mathbb{F}_p -algebra R, give an explicit description of $THH_{\mathbb{Z}/p'}(R)$ as a chain complex of \mathbb{Z}_p -modules. By semiperfect descent, we can thus also do this for \overline{R} smooth over \mathbb{F}_p .

伺 ト イヨ ト イヨト

For a ring R, the cyclic bar construction of R has

$$B_n^{cyc} = R^{\otimes (n+1)}$$

with face maps

$$d_i(a_0 \otimes \cdots a_n) = \begin{cases} a_0 \otimes \cdots a_i a_{i+1} \otimes a_n & 0 \le i \le n-1 \\ a_n a_0 \otimes \cdots a_{n-1} & i = n \end{cases}$$

Form the associated chain complex $C_{\bullet}(R)$, the Hochschild homology of R is

$$HH_*(R) = H_*(C_\bullet(R)) = \pi_*|B_\bullet^{cyc}(R)|.$$

A B M A B M

Topological Hochschild homology

Do this in a symmetric monoidal category of spectra, e. g. S-modules. Let R be associative S-algebra.

Bökstedt, EKMM: cyclic bar construction with $B_n^{cyc}(R) = R^{\wedge_S n}$ gives

$$THH(R) = |B_n^{cyc}(R)|.$$

Loday construction: for *R* commutative, there is a simplicial set model for S^1 with n + 1 *n*-simplices,

 $THH(R) = |R \otimes S^1|.$

Topological Hochschild homology

Do this in a symmetric monoidal category of spectra, e. g. S-modules. Let R be associative S-algebra.

Bökstedt, EKMM: cyclic bar construction with $B_n^{cyc}(R) = R^{\wedge_S n}$ gives

$$THH(R) = |B_n^{cyc}(R)|.$$

Loday construction: for *R* commutative, there is a simplicial set model for S^1 with n + 1 *n*-simplices,

$$THH(R) = |R \otimes S^1|.$$

- One can put the structure of a genuine S¹-equivariant spectrum on THH(R). In practice, work with finite, i. e. cyclic subgroups.
- We work with the genuine \mathbb{Z}/p^r -equivariant spectrum $THH_{\mathbb{Z}/p^r}(R)$.

The cyclotomic property

Recall the isotropy separation sequence

$$E\mathbb{Z}/p_+^r \to S^0 \to \widetilde{E\mathbb{Z}/p^r}$$

The \mathbb{Z}/p -geometric fixed points of $THH_{\mathbb{Z}/p^r}(R)$ is

$$\Phi^{\mathbb{Z}/p} THH_{\mathbb{Z}/p^{r}}(R) = (\widetilde{\mathbb{EZ}/p^{r}} \wedge THH_{\mathbb{Z}/p^{r}}(R))^{\mathbb{Z}/p}.$$

→ < Ξ → <</p>

The cyclotomic property

Recall the isotropy separation sequence

$$E\mathbb{Z}/p_+^r \to S^0 \to \widetilde{E\mathbb{Z}/p^r}$$

The \mathbb{Z}/p -geometric fixed points of $THH_{\mathbb{Z}/p^r}(R)$ is

$$\Phi^{\mathbb{Z}/p} THH_{\mathbb{Z}/p^{r}}(R) = (\widetilde{\mathbb{EZ}/p^{r}} \wedge THH_{\mathbb{Z}/p^{r}}(R))^{\mathbb{Z}/p}$$

The cyclotomic property (\mathbb{Z}/p^r -equivariant):

$$\Phi^{\mathbb{Z}/p} THH_{\mathbb{Z}/p^{r+1}}(R) \simeq THH_{\mathbb{Z}/p^r}(R).$$

So we get a map of \mathbb{Z}/p^r -spectra

$$R: THH_{\mathbb{Z}/p^{r+1}}(R)^{\mathbb{Z}/p} \to THH_{\mathbb{Z}/p^{r}}(R)$$

Iterating the map R, define the \mathbb{Z}/p^r -equivariant spectrum $TR_{\mathbb{Z}/p^r}(R)$ as

 $TR_{\mathbb{Z}/p^{r}}(R) = \text{holim} (\dots \to THH_{\mathbb{Z}/p^{r+1}}(R)^{\mathbb{Z}/p} \to THH_{\mathbb{Z}/p^{r}}(R))$

• • = • • = •

Iterating the map R, define the \mathbb{Z}/p^r -equivariant spectrum $TR_{\mathbb{Z}/p^r}(R)$ as

$$TR_{\mathbb{Z}/p^{r}}(R) = \text{holim} (\dots \to THH_{\mathbb{Z}/p^{r+1}}(R)^{\mathbb{Z}/p} \to THH_{\mathbb{Z}/p^{r}}(R))$$

We will work with \mathbb{F}_p -algebras R. They have the Frobenius map $\varphi: R \to R$, namely $\varphi(x) = x^p$. R is

- *perfect* if φ is an isomorphism
- semiperfect if φ is surjective

For a commutative ring R, recall the ring of (*p*-typical) Witt vectors. As a set,

$$W(R) = \{(a_0, a_1, \ldots) \mid a_i \in R\}.$$

with

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (s_0(a_0, b_0), s_1(a_0, a_1, b_0, b_1), \ldots)$$

 $(a_0, a_1, \ldots) \cdot (b_0, b_1, \ldots) = (p_0(a_0, b_0), p_1(a_0, a_1, b_0, b_1), \ldots)$

The integral polynomials $s_0, s_1, \ldots, p_0, p_1, \ldots$ are determined by the requirement that the ghost map $w : W(\mathbb{Z}) \to \mathbb{Z}^{\mathbb{N}_0}$ given by

$$(a_0, a_1, a_2, \ldots) \mapsto (a_0, a_0^p + pa_1, a_0^{p^2} + pa_1^p + p^2 a_2, \ldots)$$

be a ring map.

On the ring of Witt vectors W(R), there is the *Frobenius* ring map and the additive *Verschiebung* map

$$F(w_0, w_1, \ldots) = (w_1, w_2, \ldots)$$
$$V(a_0, a_1, \ldots) = (0, a_0, a_1, \ldots)$$

They satisify

- xV(y) = V(F(x)y) and FV = p
- For a \mathbb{F}_p -algebra R, VF = p
- For a \mathbb{F}_p -algebra R, $F = W(\varphi)$: $F(a_0, a_1, \ldots) = (a_0^p, a_1^p, \ldots)$
- Length *n* Witt vectors: $W_n(R) = W(R)/V^nW(R)$

Example: $W(\mathbb{F}_p) = \mathbb{Z}_p, W_k(\mathbb{F}_p) = \mathbb{Z}/p^k$.

Theorem (Hesselholt-Mandell)

For any commutative ring R,

$$THH(R)_0^{\mathbb{Z}/p^k} = W_{k+1}(R).$$

Theorem (Hesselholt-Madsen)

For R a perfect \mathbb{F}_p -algebra,

$$THH(R)_*^{\mathbb{Z}/p^k} = W_{k+1}(R)[\sigma_k]$$

where $|\sigma_k| = 2$.

The map

$$R: THH(R)^{\mathbb{Z}/p^k} \to THH(R)^{\mathbb{Z}/p^{k-1}}$$

sends σ_k to $p\sigma_{k-1}$. For $R = \mathbb{F}_p$ and interpreting the result in the \mathbb{Z}/p^r -equivariant category, passing to inverse limit gives

$$TR_{\mathbb{Z}/p^r}(\mathbb{F}_p) \simeq H\underline{\mathbb{Z}_p}.$$

• • = • • = •

The map

$$R: THH(R)^{\mathbb{Z}/p^k} \to THH(R)^{\mathbb{Z}/p^{k-1}}$$

sends σ_k to $p\sigma_{k-1}$. For $R = \mathbb{F}_p$ and interpreting the result in the \mathbb{Z}/p^r -equivariant category, passing to inverse limit gives

$$TR_{\mathbb{Z}/p^r}(\mathbb{F}_p)\simeq H\underline{\mathbb{Z}_p}.$$

Leads to: For \mathbb{F}_{p} -algebra R, $THH_{\mathbb{Z}/p^{r}}(R)$ is a module over the E_{∞} -algebra $TR_{\mathbb{Z}/p^{r}}(\mathbb{F}_{p}) = H\mathbb{Z}_{p}$.

Proof: For simplicity, just take $R = \mathbb{F}_p$. Do induction on r. One has the Tate diagram (of nonequivariant spectra) for cyclotomic spectra. Here, the right half is

Proof: For simplicity, just take $R = \mathbb{F}_p$. Do induction on r. One has the Tate diagram (of nonequivariant spectra) for cyclotomic spectra. Here, the right half is

$$\underbrace{F(E\mathbb{Z}/p^{k}, THH(\mathbb{F}_{p}))^{\mathbb{Z}/p^{k}} \xrightarrow{R} (\Phi^{\mathbb{Z}/p} THH(\mathbb{F}_{p}))^{\mathbb{Z}/p^{k-1}}}_{THH(\mathbb{F}_{p}))^{\mathbb{Z}/p^{k}}} \rightarrow \underbrace{(\widetilde{E\mathbb{Z}/p^{k}} \wedge F(E\mathbb{Z}/p^{k}_{+}, THH(\mathbb{F}_{p})))^{\mathbb{Z}/p^{k}}}_{THH(\mathbb{F}_{p})^{h\mathbb{Z}/p^{k}}}$$

Top right: by induction hypothesis,

$$THH(\mathbb{F}_p)^{\mathbb{Z}/p^{k-1}}_* = \mathbb{Z}/p^k[\sigma_{k-1}].$$

Bottom row: The Tate spectral sequence has

$$E_2 = \mathbb{Z}/p[t, t^{-1}, \sigma] \otimes \Lambda_{\mathbb{Z}/p}[u]$$

with $|t| = (-2,0), |\sigma| = (0,2), |u| = (-1,0)$. The only differentials are

$$d^{2k+1}: u \mapsto t^{k+1}\sigma^k.$$

Together with extensions, this gives

$$THH(\mathbb{F}_p)^{t\mathbb{Z}/p^k}_* = \mathbb{Z}/p^k[\sigma_{k-1}^{\pm 1}]$$

and

$$THH(\mathbb{F}_p)^{h\mathbb{Z}/p^k}_* = \mathbb{Z}/p^{k+1}[\sigma_k] \oplus \sigma_{k-1}^{-1} \cdot \mathbb{Z}/p^k[\sigma_{k-1}^{-1}]$$

with $\sigma_k \rightarrow p\sigma_{k-1}$. This gives the upper left corner.

Starting the induction

Theorem (Bökstedt, Breer)

$$THH_*(\mathbb{F}_p) = \mathbb{F}_p[\sigma]$$

where $|\sigma| = 2$.

御 と く き と く き と

э

Starting the induction

Theorem (Bökstedt, Breer)

$$THH_*(\mathbb{F}_p) = \mathbb{F}_p[\sigma]$$

where $|\sigma| = 2$.

Bökstedt: skeleton spectral sequence

$$HH_*(A_*) = Tor^{A_* \otimes A_*}(\mathbb{F}_p, \mathbb{F}_p) \Rightarrow H_* THH(\mathbb{F}_p)$$

Theorem (Bökstedt, Breer)

$$THH_*(\mathbb{F}_p) = \mathbb{F}_p[\sigma]$$

where $|\sigma| = 2$.

Bökstedt: skeleton spectral sequence

$$HH_*(A_*) = Tor^{A_* \otimes A_*}(\mathbb{F}_p, \mathbb{F}_p) \Rightarrow H_* THH(\mathbb{F}_p)$$

Blumberg-Cohen-Schlichtkrull: considering *THH* of generalized Thom spectra shows that

$$THH(\mathbb{F}_p) \simeq H\mathbb{F}_p \wedge \Omega S^3_+.$$

A theorem of Hopkins-Mahowald leads to the right hand side.

A slightly different variant of Bökstedt's proof:

$$THH(\mathbb{F}_{p}) = |B_{S}(H\mathbb{F}_{p}, H\mathbb{F}_{p} \wedge_{S} H\mathbb{F}_{p}, H\mathbb{F}_{p})|$$

$$= |H\mathbb{F}_{p} \wedge_{H\mathbb{F}_{p} \wedge_{S} H\mathbb{F}_{p}} B_{S}(H\mathbb{F}_{p} \wedge_{S} H\mathbb{F}_{p}, H\mathbb{F}_{p} \wedge_{S} H\mathbb{F}_{p}, H\mathbb{F}_{p})|$$

$$= |B_{H\mathbb{F}_{p}}(H\mathbb{F}_{p}, H\mathbb{F}_{p} \wedge_{S} H\mathbb{F}_{p}, H\mathbb{F}_{p})|$$

giving a spectral sequence

$$Tor^{A_*}(\mathbb{F}_p,\mathbb{F}_p) \Rightarrow THH(\mathbb{F}_p)_*$$

Bökstedt: the spectral sequence collapses for p = 2, "Kudo" differential d^{p-1} for p > 2.

The Mackey functor point of view

For a finite group *G*, *G*-*Mackey functors* are coefficient systems for genuine *G*-equivariant Eilenberg-Maclane spectra.

- The category of *G*-Mackey functors has a symmetric monoidal structure by the *box product*
- A *Green functor* is an algebra in *G*-Mackey functors with respect to the box product
- Thus, we can consider modules over a Green functor

For a finite group *G*, *G*-*Mackey functors* are coefficient systems for genuine *G*-equivariant Eilenberg-Maclane spectra.

- The category of *G*-Mackey functors has a symmetric monoidal structure by the *box product*
- A *Green functor* is an algebra in *G*-Mackey functors with respect to the box product
- Thus, we can consider modules over a Green functor

Theorem (Mandell)

There is an equivalence between the derived category of modules over the E_{∞} -algebra $H\mathbb{Z}_p$ and the derived category of modules over the Green functor $\overline{\mathbb{Z}}_p$.

Examples: $G = \mathbb{Z}/p^r$, k < r

æ

・部・・モト・モン

Choose s > r. Let α_s be the irreducible representation of \mathbb{Z}/p^s where the generator acts by $e^{2\pi i/p^s}$. Define the chain complex of \mathbb{Z} -modules

$$\mathcal{W}_{r,j} = \underline{\widetilde{C_*}} \left(S^{\infty \alpha_s^{p^{s-r-1-j}}} \right)^{\mathbb{Z}/p^{s-r}}$$

to be the \mathbb{Z}/p^r -Mackey functor valued reduced cellular chain complex.

Taking the subgroup $\mathbb{Z}/p^{s-r-j} \subset \mathbb{Z}/p^s$,

$$S^{\infty\alpha_s^{p^{s-r-1-j}}} = E\mathcal{F}[\widetilde{\mathbb{Z}/p^{s-r-j}}]$$

depends only on r, j.

Additively, the chain complex $\mathcal{W}_{r,0}$ looks like

$$\cdots \xrightarrow{1-\gamma} \underline{\mathbb{Z}}[\mathbb{Z}/p^r] \xrightarrow{pN} \underline{\mathbb{Z}}[\mathbb{Z}/p^r] \xrightarrow{1-\gamma} \underline{\mathbb{Z}}[\mathbb{Z}/p^r] \xrightarrow{p\epsilon} \underline{\mathbb{Z}}[\mathbb{Z}/p^r]$$

where $\mathbb{Z}/p^r = \langle \gamma \rangle$, and $N = 1 + \gamma + \dots + \gamma^{p^r - 1}$.

The chain complex $W_{r,j}$ for j > 0 looks like

$$\cdots \xrightarrow{1-\gamma} \underline{\mathbb{Z}}[\mathbb{Z}/p^{r-j+1}] \xrightarrow{N_{r-j+1}} \underline{\mathbb{Z}}[\mathbb{Z}/p^{r-j+1}] \xrightarrow{1-\gamma} \underline{\mathbb{Z}}[\mathbb{Z}/p^{r-j+1}] \xrightarrow{\epsilon} \underline{\mathbb{Z}}[\mathbb{Z}/p^{r-j+1}]$$

where $N_k = 1 + \gamma + \dots + \gamma^{p^k - 1}$.

 $H_*(\mathcal{W}_{r,j})$

The homology of $W_{r,j}$ are in nonnegative even dimensions.

• • = • • = •

э

Two caveats:

1. The complexes $W_{r,j}$ are E_{∞} -algebras in the derived category of $\underline{\mathbb{Z}}$ -modules. But they are not in general strictly commutative DGAs. (The corresponding Tate complexes have non-trivial Steenrod operations, which translate to non-trivial Dyer-Lashof operations on $W_{r,j}$.)

Two caveats:

1. The complexes $W_{r,j}$ are E_{∞} -algebras in the derived category of $\underline{\mathbb{Z}}$ -modules. But they are not in general strictly commutative DGAs. (The corresponding Tate complexes have non-trivial Steenrod operations, which translate to non-trivial Dyer-Lashof operations on $W_{r,j}$.)

2. Even though their homologies consist of \mathbb{Z}/p^{r-j+1} -modules, the $\mathcal{W}_{r,j}$ are not in general equivalent to chain complexes of \mathbb{Z}/p^{r-j+1} -modules.

Theorem (Burghardt, H., Kriz, Somberg)

For a perfect \mathbb{F}_p -algebra R, the $H\mathbb{Z}_p$ -algebra $THH_{\mathbb{Z}/p^r}(R)$ is

 $\mathcal{W}_{r,0}\otimes_{\mathbb{Z}}W(R)$

in $D\mathbb{Z}_p$ -Modules.

伺 ト イヨ ト イヨ ト

э

Theorem (Burghardt, H., Kriz, Somberg)

For a perfect \mathbb{F}_p -algebra R, the $H\mathbb{Z}_p$ -algebra $THH_{\mathbb{Z}/p^r}(R)$ is

 $\mathcal{W}_{r,0}\otimes_{\mathbb{Z}}W(R)$

in $D\mathbb{Z}_p$ -Modules.

Proof sketch: Follows from the theorem of Hesselholt-Madsen, using the Tate diagram and induction on r via the cyclotomic property. We have

$$THH_{\mathbb{Z}/p^{r}}(R) \simeq \Phi^{\mathbb{Z}/p^{s-r}} TR_{\mathbb{Z}/p^{s}}(R)$$
$$= (E\widetilde{\mathcal{F}[\mathbb{Z}/p^{s-r}]} \wedge TR_{\mathbb{Z}/p^{s}}(R))^{\mathbb{Z}/p^{s-r}}$$

which gives rise to $\mathcal{W}_{r,0}$.

A digression

For
$$r = 1$$
, consider our model for $W_{1,1} = \widetilde{C_*}(S^{\infty \alpha})$:

$$\cdots \xrightarrow{1-\gamma} \underline{\mathbb{Z}}[\mathbb{Z}/p] \xrightarrow{N} \underline{\mathbb{Z}}[\mathbb{Z}/p] \xrightarrow{1-\gamma} \underline{\mathbb{Z}}[\mathbb{Z}/p] \xrightarrow{\epsilon} \underline{\mathbb{Z}}[\mathbb{Z}/p]$$

This has homology $H_{2q}(\mathcal{W}_{1,1}) = \underline{\mathbb{Z}/p}_{\varphi}$ for $q \ge 0$ (and $H_{2q-1}(\mathcal{W}_{1,1}) = 0$):

御 と くをと くをとう

æ

A digression

For
$$r = 1$$
, consider our model for $W_{1,1} = \widetilde{C_*}(S^{\infty \alpha})$:

$$\cdots \xrightarrow{1-\gamma} \underline{\mathbb{Z}}[\mathbb{Z}/p] \xrightarrow{N} \underline{\mathbb{Z}}[\mathbb{Z}/p] \xrightarrow{1-\gamma} \underline{\mathbb{Z}}[\mathbb{Z}/p] \xrightarrow{\epsilon} \underline{\mathbb{Z}}[\mathbb{Z}/p]$$

This has homology $H_{2q}(\mathcal{W}_{1,1}) = \underline{\mathbb{Z}/p}_{\varphi}$ for $q \ge 0$ (and $H_{2q-1}(\mathcal{W}_{1,1}) = 0$):

$$\cdots \begin{array}{cccc} \mathbb{Z}/p & \mathbb{Z}/p & \mathbb{Z}/p \\ (\end{array} \\ 0 & (\end{array} \\ 0 & (\end{array} \\ 0 & (\end{array}) \\ 0 & 0 \\ 0 & 0 \\ \end{array}$$

As a \mathbb{Z}/p -equivariant $H\underline{\mathbb{Z}}$ -module, it corresponds to

$$S^{\infty\alpha} \wedge H\underline{\mathbb{Z}}.$$

御 とくきとくきとう

э

Now consider the standard *t*-structure on $D(\underline{\mathbb{Z}}$ -Modules): the heart is the category of $\underline{\mathbb{Z}}$ -modules. We have the distinguished triangle

$$\tau_{\geq 2}\tau_{\leq 2}\overline{\widetilde{C_{\star}}}(S^{\infty\alpha}) \to \tau_{\leq 2}\overline{\widetilde{C_{\star}}}(S^{\infty\alpha}) \to \tau_{\leq 0}\underline{\widetilde{C_{\star}}}(S^{\infty\alpha})$$

which is

$$\underline{\mathbb{Z}/p}_{\varphi}[2] \to X \to \underline{\mathbb{Z}/p}_{\varphi}$$

So

$$[X] \in Ext^{3}(\underline{\mathbb{Z}/p}_{\varphi}, \ \underline{\mathbb{Z}/p}_{\varphi}).$$

Now consider the standard *t*-structure on $D(\underline{\mathbb{Z}}$ -Modules): the heart is the category of $\underline{\mathbb{Z}}$ -modules. We have the distinguished triangle

$$\tau_{\geq 2}\tau_{\leq 2}\overline{\widetilde{C_{\star}}}(S^{\infty\alpha}) \to \tau_{\leq 2}\overline{\widetilde{C_{\star}}}(S^{\infty\alpha}) \to \tau_{\leq 0}\underline{\widetilde{C_{\star}}}(S^{\infty\alpha})$$

which is

$$\underline{\mathbb{Z}/p}_{\varphi}[2] \to X \to \underline{\mathbb{Z}/p}_{\varphi}$$

So

$$[X] \in Ext^{3}(\underline{\mathbb{Z}/p}_{\varphi}, \ \underline{\mathbb{Z}/p}_{\varphi}).$$

Turns out: $[X] \neq 0 \in Ext^3(\underline{\mathbb{Z}/p}_{\varphi}, \underline{\mathbb{Z}/p}_{\varphi})$. (By writing down explicit resolutions in $Ext^3(\underline{\mathbb{Z}}_{\varphi}, \underline{\mathbb{Z}/p}_{\varphi}) = Hom(\underline{\mathbb{Z}}, \underline{\mathbb{Z}/p}_{\varphi})$.)

Compare $\underline{\widetilde{C_*}}(S^{\infty})$ with the \mathbb{Z}/p -spectrum $S^{\infty}\alpha \wedge H\underline{\mathbb{Z}}$, which is also an $S^{\infty\alpha}$ -module. The fixed points functor $(-)^{\mathbb{Z}/p}$ gives an equivalence $S^{\infty\alpha}$ -Mod \simeq Spectra, where

$$S^{\infty\alpha} \wedge H\underline{\mathbb{Z}} \longmapsto H\mathbb{Z}/p \vee \Sigma^2 H\mathbb{Z}/p \vee \Sigma^4 H\mathbb{Z}/p \vee \cdots$$

So in the standard *t*-structure on \mathbb{Z}/p -equivariant spectra (with the heart being Mackey functors),

$$\tau_{\leq 2}(S^{\infty\alpha} \wedge H\underline{\mathbb{Z}}) = H\underline{\mathbb{Z}/p}_{\varphi} \vee H\underline{\mathbb{Z}/p}_{\varphi}[2]$$

is a trivial extension.

Compare $\underline{\widetilde{C_*}}(S^{\infty})$ with the \mathbb{Z}/p -spectrum $S^{\infty} \alpha \wedge H\underline{\mathbb{Z}}$, which is also an $S^{\infty\alpha}$ -module. The fixed points functor $(-)^{\mathbb{Z}/p}$ gives an equivalence $S^{\infty\alpha}$ -Mod \simeq Spectra, where

$$S^{\infty\alpha} \wedge H\underline{\mathbb{Z}} \longmapsto H\mathbb{Z}/p \vee \Sigma^2 H\mathbb{Z}/p \vee \Sigma^4 H\mathbb{Z}/p \vee \cdots$$

So in the standard *t*-structure on \mathbb{Z}/p -equivariant spectra (with the heart being Mackey functors),

$$\tau_{\leq 2}(S^{\infty\alpha} \wedge H\underline{\mathbb{Z}}) = H\underline{\mathbb{Z}/p}_{\varphi} \vee H\underline{\mathbb{Z}/p}_{\varphi}[2]$$

is a trivial extension.

Conclusion: The forgetful functor

$$D(\underline{\mathbb{Z}}\text{-}\mathsf{Mod}) \longrightarrow D(\mathbb{Z}/p\text{-}\mathsf{Spectra})$$

is not faithful!

What we really want: Mackey model for $THH_{\mathbb{Z}/p'}(R)$, for R smooth over \mathbb{F}_p .

★ Ξ →

What we really want: Mackey model for $THH_{\mathbb{Z}/p^r}(R)$, for R smooth over \mathbb{F}_p .

Theorem (Hesselholt)

For a smooth algebra R over \mathbb{F}_{p} ,

$$THH(R)^{\mathbb{Z}/p^{k}}_{*} = \Omega W_{k+1}(R)[\sigma_{k}]$$

where $\Omega W_{k+1}(R)$ is Illusie's DeRham-Witt complex of length k+1.

For R a \mathbb{F}_p -algebra, the *(colimit) perfection* of R is

$$R_{perf} = \operatorname{colim}(R \to R \to R \to \cdots)$$

where all maps are the Frobenius φ .

For R a \mathbb{F}_p -algebra, the *(colimit) perfection* of R is

$$R_{perf} = \operatorname{colim}(R \to R \to R \to \cdots)$$

where all maps are the Frobenius φ .

Then THH(R) has semiperfect descent:

$$THH(R) \rightarrow \left| THH(R_{perf} \otimes_R R_{perf} \otimes_R \cdots \otimes_R R_{perf}) \right|$$

is an equivalence. Each stage $R_{perf} \otimes_R \cdots \otimes_R R_{perf}$ of the cosimplicial resolution is *quasi-smooth* and semiperfect.

The derived cotangent complex

Quillen: for a map of commutative rings $A \rightarrow B$, the *derived cotangent complex*

$$L_{B/A} = B \otimes_P \Omega_{P/A}$$

(where *P* is a projective resolution of *B* over *A*) is the left derived functor of the Kähler differentials $\Omega_{B/A}$.

The derived cotangent complex

Quillen: for a map of commutative rings $A \rightarrow B$, the *derived cotangent complex*

$$L_{B/A} = B \otimes_P \Omega_{P/A}$$

(where P is a projective resolution of B over A) is the left derived functor of the Kähler differentials $\Omega_{B/A}$.

For $A \rightarrow B \rightarrow C$, there is a cofibration in the derived category of *C*-modules

$$C\otimes_B L_{B/A} \to L_{C/A} \to L_{C/B}.$$

The derived cotangent complex

Quillen: for a map of commutative rings $A \rightarrow B$, the *derived cotangent complex*

$$L_{B/A} = B \otimes_P \Omega_{P/A}$$

(where P is a projective resolution of B over A) is the left derived functor of the Kähler differentials $\Omega_{B/A}$.

For $A \rightarrow B \rightarrow C$, there is a cofibration in the derived category of *C*-modules

$$C\otimes_B L_{B/A} \to L_{C/A} \to L_{C/B}.$$

Theorem (Quillen)

For $A \rightarrow B$, $B \otimes_A B \simeq B$, there is a spectral sequence

$$E_{p,q}^2 = H_{p+q}(Sym_B^q L_{B/A}) \Rightarrow Tor_{p+q}^A(B,B).$$

In particular, $H_1(L_{B/A}) = Tor_1^A(B, B)$.

The limit perfection S_R

Let R be a semiperfect \mathbb{F}_p algebra. Its limit perfection is

$$S_R = \lim(\dots \to R \to R \to R).$$

Let $J = Ker(S_R \to R)$. The maps $\mathbb{F}_p \to S_R \to R$ gives

$$L_{R/\mathbb{F}_p}\cong L_{R/S_R}.$$

Apply Quillen's theorem for $S_R \rightarrow R$ gives

$$H_1(L_{R/\mathbb{F}_p}) = Tor_1^{S_R}(R, R) = J/J^2.$$

The limit perfection S_R

Let *R* be a semiperfect \mathbb{F}_p algebra. Its limit perfection is

$$S_R = \lim(\dots \to R \to R \to R).$$

Let $J = Ker(S_R \to R)$. The maps $\mathbb{F}_p \to S_R \to R$ gives

$$L_{R/\mathbb{F}_p}\cong L_{R/S_R}.$$

Apply Quillen's theorem for $S_R \rightarrow R$ gives

$$H_1(L_{R/\mathbb{F}_p}) = Tor_1^{S_R}(R, R) = J/J^2.$$

A semiperfect \mathbb{F}_p -algebra R is quasi-smooth if

• $H_1(L_{R/\mathbb{F}_p}) = J/J^2$ is a free *R*-module of finite rank

•
$$H_n(L_{R/\mathbb{F}_p}) = 0$$
 for $n \neq 1$

• $Sym_R^q(J/J^2) = J^q/J^{q+1}$

Let R be quasi-smooth semiperfect. The cofiber sequence of derived cotangent complexes for $\mathbb{F}_p \to R \otimes_{\mathbb{F}_p} R \to R$ gives

$$L_{R/R\otimes R}\simeq J/J^2[2].$$

The Quillen spectral sequence

$$H_*(Sym^q(L_{R/R\otimes R})) = Sym(J/J^2[2]) \Rightarrow Tor^{R\otimes R}(R,R)$$

collapses.

Next, analogously as in the case of \mathbb{F}_p , we have spectral sequence $Tor^{A_* \otimes R \otimes R}(R, R) = Tor^{A_*}(\mathbb{F}_p, \mathbb{F}_p) \otimes Sym(J/J^2[2]) \Rightarrow THH(R)_*.$

- For p = 2, the spectral sequence collapses
- For p > 2, there are differentials similarly as in the 𝔽_p-case by Bökstedt

- For p = 2, the spectral sequence collapses
- For p > 2, there are differentials similarly as in the 𝔽_p-case by Bökstedt

Proposition (Burghardt, H., Kriz, Somberg)

For R quasi-smooth semiperfect,

$$THH(R)_{2q} = \bigoplus_{i=0}^{q} J^{i}/J^{i+1}$$

$$THH(R)_{2q+1}=0.$$

- Choose basis B for J/J^2 over R
- Let B_q be the set of unordered q-tuples of B-elements, i. e. B_q is a basis for $J^q/J^{q+1} = Sym^q(J/J^2)$

Write

$$W_r^{B_q}(R) = \bigoplus_{B_q} W_r(R)$$

- Also, choose a set of integral lifts \widetilde{B} of B via $W(S_R) \to R$. So we also get integral lifts $\widetilde{B_q}$.
- The $\bigoplus_{\widetilde{B_q}} W_{r,j}$ are functorial in the category of $\underline{\mathbb{Z}_p}$ -modules (on the nose)

$$\mathcal{W}_{r}^{\widetilde{B_{q}}} = \lim \left(\begin{array}{c} \bigoplus_{\widetilde{B_{q}}} \mathcal{W}_{r,r} \\ \downarrow^{\varphi} \\ & \cdots \longrightarrow \bigoplus_{\widetilde{B_{q}}} \mathcal{W}_{r,r} \\ & \downarrow^{\varphi} \\ \oplus_{\widetilde{B_{q}}} \mathcal{W}_{r,0} \xrightarrow{\pi} \oplus_{\widetilde{B_{q}}} \mathcal{W}_{r,1} \end{array} \right)$$

The vertical maps are induced by the Frobenius φ on R. The horizontal maps are projections.

★ Ξ →

Theorem (Burghardt, H., Kriz, Somberg)

For a quasi-smooth semiperfect \mathbb{F}_p -algebra R,

$$THH^{\mathbb{Z}/p^r}(R)_{2q} = \bigoplus_{i=0}^{q} W^{B_i}_{r+1}(R)$$

$$THH^{\mathbb{Z}/p^r}(R)_{2q+1}=0.$$

In the derived category of $\mathbb{Z}_p\text{-modules},$ the $\mathbb{Z}/p^r\text{-equivariant}$

$$THH_{\mathbb{Z}/p^r}(R) = \bigoplus_{q\geq 0} \mathcal{W}_R^{\widetilde{B}_q}[2q].$$

Again, induction on r using the Tate diagram and the cyclotomic condition.