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Outline

Joint with V. Burghardt, I. Kriz, P. Somberg

For an Fp-algebra R, its Z/pr -equivariant topological
Hochschild homology THHZ/pr (R) is a module over the
E∞-algebra TR(Fp) = HZp, where Zp is the constant

Z/pr -Mackey functor for the ring Zp

There is an equivalence between the derived category of
HZp-modules and the derived category of Zp-module Mackey
functors

This talk: For a quasi-smooth semiperfect Fp-algebra R, give an
explicit description of THHZ/pr (R) as a chain complex of
Zp-modules. By semiperfect descent, we can thus also do this for
R smooth over Fp.
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Classical Hochschild homology

For a ring R, the cyclic bar construction of R has

Bcyc
n = R⊗(n+1)

with face maps

di(a0 ⊗⋯an) =
⎧⎪⎪⎨⎪⎪⎩

a0 ⊗⋯aiai+1 ⊗ an 0 ≤ i ≤ n − 1
ana0 ⊗⋯an−1 i = n

Form the associated chain complex C●(R), the Hochschild
homology of R is

HH∗(R) = H∗(C●(R)) = π∗∣Bcyc
●
(R)∣.
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Topological Hochschild homology

Do this in a symmetric monoidal category of spectra, e. g.
S-modules. Let R be associative S-algebra.

Bökstedt, EKMM: cyclic bar construction with Bcyc
n (R) = R∧Sn

gives
THH(R) = ∣Bcyc

n (R)∣.

Loday construction: for R commutative, there is a simplicial set
model for S1 with n + 1 n-simplices,

THH(R) = ∣R ⊗ S1∣.

One can put the structure of a genuine S1-equivariant
spectrum on THH(R). In practice, work with finite, i. e.
cyclic subgroups.

We work with the genuine Z/pr -equivariant spectrum
THHZ/pr (R).
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The cyclotomic property

Recall the isotropy separation sequence

EZ/pr
+
→ S0 → ẼZ/pr

The Z/p-geometric fixed points of THHZ/pr (R) is

ΦZ/pTHHZ/pr (R) = (ẼZ/pr ∧THHZ/pr (R))Z/p.

The cyclotomic property (Z/pr -equivariant):

ΦZ/pTHHZ/pr+1(R) ≃ THHZ/pr (R).

So we get a map of Z/pr -spectra

R ∶ THHZ/pr+1(R)Z/p → THHZ/pr (R)
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Z/pr -equivariant topological restriction homology

Iterating the map R, define the Z/pr -equivariant spectrum
TRZ/pr (R) as

TRZ/pr (R) = holim (⋯ → THHZ/pr+1(R)Z/p → THHZ/pr (R))

We will work with Fp-algebras R. They have the Frobenius map
φ ∶ R → R, namely φ(x) = xp. R is

perfect if φ is an isomorphism

semiperfect if φ is surjective
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Witt vectors

For a commutative ring R, recall the ring of (p-typical) Witt
vectors. As a set,

W (R) = {(a0, a1, . . .) ∣ ai ∈ R}.

with

(a0, a1, . . .) + (b0,b1, . . .) = (s0(a0,b0), s1(a0, a1,b0,b1), . . .)
(a0, a1, . . .) ⋅ (b0,b1, . . .) = (p0(a0,b0),p1(a0, a1,b0,b1), . . .)

The integral polynomials s0, s1, . . . ,p0,p1, . . . are determined by
the requirement that the ghost map w ∶W (Z) → ZN0 given by

(a0, a1, a2, . . .) ↦ (a0, ap0 + pa1, a
p2

0 + pa
p
1 + p

2a2, . . .)

be a ring map.
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On the ring of Witt vectors W (R), there is the Frobenius ring map
and the additive Verschiebung map

F (w0,w1, . . .) = (w1,w2, . . .)
V (a0, a1, . . .) = (0, a0, a1, . . .)

They satisify

xV (y) = V (F (x)y) and FV = p
For a Fp-algebra R, VF = p
For a Fp-algebra R, F =W (φ): F (a0, a1, . . .) = (ap0 , a

p
1 , . . .)

Length n Witt vectors: Wn(R) =W (R)/V nW (R)

Example: W (Fp) = Zp, Wk(Fp) = Z/pk .
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The perfect case

Theorem (Hesselholt-Mandell)

For any commutative ring R,

THH(R)Z/p
k

0 =Wk+1(R).

Theorem (Hesselholt-Madsen)

For R a perfect Fp-algebra,

THH(R)Z/p
k

∗ =Wk+1(R)[σk]

where ∣σk ∣ = 2.
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The map

R ∶ THH(R)Z/pk → THH(R)Z/pk−1

sends σk to pσk−1. For R = Fp and interpreting the result in the
Z/pr -equivariant category, passing to inverse limit gives

TRZ/pr (Fp) ≃ HZp.

Leads to: For Fp-algebra R, THHZ/pr (R) is a module over the
E∞-algebra TRZ/pr (Fp) = HZp.
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Proof: For simplicity, just take R = Fp. Do induction on r . One
has the Tate diagram (of nonequivariant spectra) for cyclotomic
spectra. Here, the right half is

THH(Fp)Z/p
k R //

��

THH(Fp)
Z/pk−1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΦZ/pTHH(Fp))Z/p

k−1

��

F (EZ/pk
+
,THH(Fp))Z/p

k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
THH(Fp)

hZ/pk

// (ẼZ/pk ∧ F (EZ/pk
+
,THH(Fp)))Z/p

k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
THH(Fp)

tZ/pk

Top right: by induction hypothesis,

THH(Fp)Z/p
k−1

∗ = Z/pk[σk−1].
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Bottom row: The Tate spectral sequence has

E2 = Z/p[t, t−1, σ] ⊗ ΛZ/p[u]

with ∣t ∣ = (−2,0), ∣σ∣ = (0,2), ∣u∣ = (−1,0). The only differentials
are

d2k+1 ∶ u ↦ tk+1σk .

Together with extensions, this gives

THH(Fp)tZ/p
k

∗ = Z/pk[σ±1k−1]

and
THH(Fp)hZ/p

k

∗ = Z/pk+1[σk] ⊕ σ−1k−1 ⋅Z/pk[σ−1k−1]

with σk → pσk−1. This gives the upper left corner.
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Starting the induction

Theorem (Bökstedt, Breer)

THH∗(Fp) = Fp[σ]

where ∣σ∣ = 2.

Bökstedt: skeleton spectral sequence

HH∗(A∗) = TorA∗⊗A∗(Fp,Fp) ⇒ H∗THH(Fp)

Blumberg-Cohen-Schlichtkrull: considering THH of generalized
Thom spectra shows that

THH(Fp) ≃ HFp ∧ΩS3
+
.

A theorem of Hopkins-Mahowald leads to the right hand side.
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A slightly different variant of Bökstedt’s proof:

THH(Fp) = ∣BS(HFp,HFp ∧S HFp,HFp)∣
= ∣HFp ∧HFp∧SHFp BS(HFp ∧S HFp,HFp ∧S HFp,HFp)∣
= ∣BHFp(HFp,HFp ∧S HFp,HFp)∣

giving a spectral sequence

TorA∗(Fp,Fp) ⇒ THH(Fp)∗

Bökstedt: the spectral sequence collapses for p = 2, “Kudo”
differential dp−1 for p > 2.
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The Mackey functor point of view

For a finite group G , G -Mackey functors are coefficient systems for
genuine G -equivariant Eilenberg-Maclane spectra.

The category of G -Mackey functors has a symmetric monoidal
structure by the box product

A Green functor is an algebra in G -Mackey functors with
respect to the box product

Thus, we can consider modules over a Green functor

Theorem (Mandell)

There is an equivalence between the derived category of modules
over the E∞-algebra HZp and the derived category of modules
over the Green functor Zp.
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Examples: G = Z/pr , k < r

Z/pr Z
1 ��

Z
��

Z
��

Wr+1(R)
F ��

Z/pr−1 Z
1 ��

p
WW

Z[Z/p]

WW

��

Z[Z/p]

WW

��

Wr(R)
V
TT

F ��
⋮ ⋮

p
WW

1 ��

⋮

TT

��

⋮

TT

��

⋮
F ��

V
TT

Z/pr−k Z
p
VV

1 ��

Z[Z/pk]

VV

��

Z[Z/pk]

VV

1 ��

Wr−k+1(R)
V

VV

��
⋮ ⋮

p
WW

1 ��

⋮

TT

��

⋮

TT

1 ��

⋮

TT

F ��
{e} Z

p
VV

Z[Z/pr ]

VV

Z[Z/pk]

VV

R

V

VV

isotropy Z Z[Z/pr ] Z[Z/pk] W r+1(R)
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The perfect case: Mackey point of view

Choose s > r . Let αs be the irreducible representation of Z/ps
where the generator acts by e2πi/p

s
. Define the chain complex of

Z-modules

Wr ,j = C̃∗ (S∞αps−r−1−j

s )
Z/ps−r

to be the Z/pr -Mackey functor valued reduced cellular chain
complex.

Taking the subgroup Z/ps−r−j ⊂ Z/ps ,

S∞αps−r−1−j

s = ̃EF[Z/ps−r−j]

depends only on r , j .
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Additively, the chain complex Wr ,0 looks like

⋯ 1−γ // Z[Z/pr ] pN // Z[Z/pr ] 1−γ // Z[Z/pr ] pϵ // Z

where Z/pr = ⟨γ⟩, and N = 1 + γ +⋯ + γpr−1.

The chain complex Wr ,j for j > 0 looks like

⋯ 1−γ // Z[Z/pr−j+1]
Nr−j+1 // Z[Z/pr−j+1] 1−γ // Z[Z/pr−j+1] ϵ // Z

where Nk = 1 + γ +⋯ + γp
k
−1.
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H∗(Wr ,j)

The homology of Wr ,j are in nonnegative even dimensions.

Z/pr+1

��

Z/pr

��

Z/p
��

Z/pr

��

UU

Z/pr−1

��

UU

0

��

UU

⋮
��

TT

⋮
��

TT

. . . ⋮
��

WW

Z/p2

VV

��

Z/p

VV

��

0

��

VV

Z/p

TT

0

TT

0

WW

H2q(Wr ,0) H2q(Wr ,1) . . . H2q(Wr ,r)
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Two caveats:

1. The complexes Wr ,j are E∞-algebras in the derived category of
Z-modules. But they are not in general strictly commutative
DGAs. (The corresponding Tate complexes have non-trivial
Steenrod operations, which translate to non-trivial Dyer-Lashof
operations on Wr ,j .)

2. Even though their homologies consist of Z/pr−j+1-modules, the
Wr ,j are not in general equivalent to chain complexes of
Z/pr−j+1-modules.
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Theorem (Burghardt, H., Kriz, Somberg)

For a perfect Fp-algebra R, the HZp-algebra THHZ/pr (R) is

Wr ,0 ⊗Z W (R)

in DZp-Modules.

Proof sketch: Follows from the theorem of Hesselholt-Madsen,
using the Tate diagram and induction on r via the cyclotomic
property. We have

THHZ/pr (R) ≃ ΦZ/ps−rTRZ/ps (R)
= ( ̃EF[Z/ps−r ] ∧TRZ/ps (R))Z/p

s−r

which gives rise to Wr ,0.
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A digression

For r = 1, consider our model for W1,1 = C̃∗(S∞α):

⋯ 1−γ // Z[Z/p] N // Z[Z/p] 1−γ // Z[Z/p] ϵ // Z

This has homology H2q(W1,1) = Z/pφ for q ≥ 0 (and

H2q−1(W1,1) = 0):

Z/p

��

Z/p

��

Z/p

��
⋯ 0 0 0 0 ⋯

0

TT

0

TT

0

TT

As a Z/p-equivariant HZ-module, it corresponds to

S∞α ∧HZ.
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Now consider the standard t-structure on D(Z-Modules): the heart
is the category of Z-modules. We have the distinguished triangle

τ≥2τ≤2C̃∗(S∞α) → τ≤2C̃∗(S∞α) → τ≤0C̃∗(S∞α)

which is
Z/p

φ
[2] → X → Z/p

φ

So
[X ] ∈ Ext3(Z/p

φ
, Z/p

φ
).

Turns out: [X ] ≠ 0 ∈ Ext3(Z/p
φ
, Z/p

φ
). (By writing down

explicit resolutions in Ext3(Zφ,Z/pφ) = Hom(Z,Z/pφ).)
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Compare C̃∗(S∞) with the Z/p-spectrum S∞α ∧HZ, which is also

an S∞α-module. The fixed points functor (−)Z/p gives an
equivalence S∞α-Mod ≃ Spectra, where

S∞α ∧HZ � // HZ/p ∨Σ2HZ/p ∨Σ4HZ/p ∨⋯ .

So in the standard t-structure on Z/p-equivariant spectra (with
the heart being Mackey functors),

τ≤2(S∞α ∧HZ) = HZ/p
φ
∨HZ/p

φ
[2]

is a trivial extension.

Conclusion: The forgetful functor

D(Z-Mod) // D(Z/p-Spectra)

is not faithful!
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S∞α ∧HZ � // HZ/p ∨Σ2HZ/p ∨Σ4HZ/p ∨⋯ .

So in the standard t-structure on Z/p-equivariant spectra (with
the heart being Mackey functors),

τ≤2(S∞α ∧HZ) = HZ/p
φ
∨HZ/p

φ
[2]

is a trivial extension.

Conclusion: The forgetful functor

D(Z-Mod) // D(Z/p-Spectra)

is not faithful!
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The quasi-smooth semiperfect case

What we really want: Mackey model for THHZ/pr (R), for R
smooth over Fp.

Theorem (Hesselholt)

For a smooth algebra R over Fp,

THH(R)Z/p
k

∗ = ΩWk+1(R)[σk]

where ΩWk+1(R) is Illusie’s DeRham-Witt complex of length k + 1.
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For R a Fp-algebra, the (colimit) perfection of R is

Rperf = colim(R → R → R → ⋯)

where all maps are the Frobenius φ.

Then THH(R) has semiperfect descent:

THH(R) →
RRRRRRRRRRR
THH(Rperf ⊗R Rperf ⊗R ⋯⊗R Rperf )

RRRRRRRRRRR
is an equivalence. Each stage Rperf ⊗R ⋯⊗R Rperf of the
cosimplicial resolution is quasi-smooth and semiperfect.
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The derived cotangent complex

Quillen: for a map of commutative rings A→ B, the derived
cotangent complex

LB/A = B ⊗P ΩP/A

(where P is a projective resolution of B over A) is the left derived
functor of the Kähler differentials ΩB/A.

For A→ B → C , there is a cofibration in the derived category of
C -modules

C ⊗B LB/A → LC/A → LC/B .

Theorem (Quillen)

For A→ B, B ⊗A B ≃ B, there is a spectral sequence

E 2
p,q = Hp+q(Symq

BLB/A) ⇒ TorAp+q(B,B).

In particular, H1(LB/A) = TorA1 (B,B).
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The limit perfection SR

Let R be a semiperfect Fp algebra. Its limit perfection is

SR = lim(⋯ → R → R → R).

Let J = Ker(SR → R). The maps Fp → SR → R gives

LR/Fp
≅ LR/SR .

Apply Quillen’s theorem for SR → R gives

H1(LR/Fp
) = TorSR1 (R,R) = J/J

2.

A semiperfect Fp-algebra R is quasi-smooth if

H1(LR/Fp
) = J/J2 is a free R-module of finite rank

Hn(LR/Fp
) = 0 for n ≠ 1

Symq
R(J/J

2) = Jq/Jq+1
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The r=0 case

Let R be quasi-smooth semiperfect. The cofiber sequence of
derived cotangent complexes for Fp → R ⊗Fp R → R gives

LR/R⊗R ≃ J/J2[2].

The Quillen spectral sequence

H∗(Symq(LR/R⊗R)) = Sym(J/J2[2]) ⇒ TorR⊗R(R,R)

collapses.

Next, analogously as in the case of Fp, we have spectral sequence

TorA∗⊗R⊗R(R,R) = TorA∗(Fp,Fp) ⊗ Sym(J/J2[2]) ⇒ THH(R)∗.
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For p = 2, the spectral sequence collapses

For p > 2, there are differentials similarly as in the Fp-case by
Bökstedt

Proposition (Burghardt, H., Kriz, Somberg)

For R quasi-smooth semiperfect,

THH(R)2q =
q

⊕
i=0

J i/J i+1

THH(R)2q+1 = 0.
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The general r case

Choose basis B for J/J2 over R

Let Bq be the set of unordered q-tuples of B-elements, i. e.
Bq is a basis for Jq/Jq+1 = Symq(J/J2)
Write

W
Bq
r (R) =⊕

Bq

Wr(R)

Also, choose a set of integral lifts B̃ of B via W (SR) → R. So
we also get integral lifts B̃q.

The ⊕B̃q
Wr ,j are functorial in the category of Zp-modules

(on the nose)
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Write

W B̃q
r = lim

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⊕B̃q
Wr ,r

φ

��
⋯

��

// ⊕B̃q
Wr ,r

⊕B̃q
Wr ,1

φ

��

π
// ⋯

⊕B̃q
Wr ,0 π

// ⊕B̃q
Wr ,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The vertical maps are induced by the Frobenius φ on R. The
horizontal maps are projections.
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The case of general r

Theorem (Burghardt, H., Kriz, Somberg)

For a quasi-smooth semiperfect Fp-algebra R,

THHZ/pr (R)2q =
q

⊕
i=0

W Bi
r+1(R)

THHZ/pr (R)2q+1 = 0.

In the derived category of Zp-modules, the Z/pr -equivariant

THHZ/pr (R) = ⊕
q≥0

W B̃q

R [2q].

Again, induction on r using the Tate diagram and the cyclotomic
condition.
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