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The Kervaire invariant problem

Theorem (Hill-Hopkins—Ravenel 2009)

For j > 7, the Kervaire invariant elements 8; do not exist.

» Start with MU(%) (Cg-equivariant spectrum)
> Invert a certain class D: D~*MU(G)

» Invented the equivariant slice spectral sequence to compute
7 (D~ MU(G))Gs
» Detection Theorem:
7. (D7*MU(G))C detects the Kervaire invariant elements
» Periodicity Theorem:
7. (D" MU(G)) G is 256-periodic.

» Gap Theorem:
m(D~*MU()) G = 0 for i = —1, -2, —3.
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Motivation

» Motivation: computing and analyzing the slice spectral sequence of
MU(C) and its quotients

» Question: what meaningful phenomena can we extract from the slice
spectral sequence?

» Question: what do they tell us about equivariant and chromatic
homotopy theory?
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» X: G-spectrum
> H C G, take fixed points X"
> 1.X" form a Mackey functor: 7w, X

» The slice spectral sequence computes w, X
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The slice spectral sequence

» Slice tower: equivariant refinement of the Postnikov tower
» py: regular representation of H
Slice cells: G Ay S"PH
Dimension = underlying dimension (n|H|)
> S., (“slice n-connected”): smallest full subcategory such that
» contains slice cells of dimension > n
> closed under taking cofibers, extensions and wedges
» Warning: not closed under taking desuspensions or fibers
> X — P"X “killing higher spheres”
P"X € Sgn
S<p={X|Mapg(Y,X) =% Y € Ss,}

v

v



The slice spectral sequence

Slice tower:

X — 5 oo —— prHlIX P X PriX —
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a (y-slice spectral sequence
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» Observation:

» There are two different “cones” of the slice spectral sequence
» Each cone is further divided into different “regions”

» Question: what do these regions mean theoretically?

» Question: studying the entire slice spectral sequence all at once is
hard, but... can we isolate each region and study it separately?

» Answer: the generalized Tate diagram
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Greenlees and May introduced the Tate diagram for any G-spectrum X:

EG, A X X EGAX

y | I

EG, A F(EGy,X) — F(EG_,X) —— EG A F(EGy, X)

> EG is the cofiber of EG, —3 S°
» The right square is a pullback square (Tate square)
» This is a powerful tool in equivariant homotopy theory
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Tate diagram

Xne X6 (EG A X)C
XhG XhG XtG

» The Tate diagram gives relations among different equivariant
constructions associated with X
> XC: fixed point
Xhe: homotopy orbit
X"¢: homotopy fixed point
X'€: Tate fixed point
(EG A X)©: geometric fixed point (when |G| = p)

vvyy

» We can decompose X into “easier pieces”, analyze them
individually, and “glue” them back using the Tate diagram
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» For F a family of subgroups of G, Greenlees and May further
introduced the generalized Tate diagram
EF, A X X EFAX

=

EF, AF(EF,,X) — F(EF,,X) —— EF AF(EF.,X)

» EF is the unique G-space characterized by the property

(EF)f ~% ifHeF
(EF)" =@ otherwise

» When F = {e}, EF = EG, and we get the classical Tate diagram
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Generalized Tate diagram

» Observation: if we replace X by the slice tower P, X, then the
generalized Tate diagram becomes a diagram of filtered G-spectra

EF, APX P.X EF APX

- | !

EFy AF(EF,,PX) —— F(EFy,PoX) —— EF A F(EF,, PoX)

» This induces a diagram of equivariant spectral sequences

» We can use this diagram to analyze the equivariant slice spectral
sequence SliceSS(X)

> Example: PoX —> EF A PX
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Localized slice spectral sequence

» The spectral sequence associated to EF A P.X is called the
localized slice spectral sequence

» For N a normal subgroup of G, set
F = F[N]: family of all subgroups of G not containing N

» The localized slice spectral sequence converges strongly to the
homotopy groups of (EF[N] A X)¢ = ®N(X)¢/N
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Example: G = G4

> X: C4-spectrum
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Example: G = G4

> X: C4-spectrum
> N =Cy: EF[C] A PX = m,d%(X)
> N=GC: EF[G]APX = m,0%(X)G/C



N = G d%(X)
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N = G ¢&(X)%/C
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Three

observations

Observation 1:
In general, geometric fixed points are easier to compute than fixed
points

Observation 2: N

While computing the localized slice spectral sequences EF A Py X
(easier), we can actually recover the positive cone of the original
slice spectral sequence P¢ X (harder)

Observation 3:
The same holds for the negative cone, by using the spectral
sequence F(EF, P¢X) from the generalized Tate diagram



Slice Recovery Theorem

Theorem (Meier-S.—Zeng, Liu-S.-Yan)
1. In the positive cone, the map
SliceSS(X) —+ EF[N] A SliceSS(X)

induces an isomorphism of spectral sequences on or above the line of
slope (h — 1). Here, h is the order of the largest subgroup in F[N].



Slice Recovery Theorem

Theorem (Meier-S.—Zeng, Liu-S.-Yan)
1. In the positive cone, the map
SliceSS(X) —+ EF[N] A SliceSS(X)

induces an isomorphism of spectral sequences on or above the line of
slope (h — 1). Here, h is the order of the largest subgroup in F[N].

2. In the negative cone, the map
F(EF[N], SliceSS(X)) — SliceSS(X)

induces an isomorphism of spectral sequences on or below the line of
slope (h —1).



F (E}'[Cz], SIiceSS(X)) EF[G)] A SliceSS(X)

I

(E]-'[Q] SIiceSS(X)) S EF[Ci] A SliceSS(X)

1 2

: SllceSS(X)

(E}"[C2 1] SliceSS(X SliceSS(X)

E]-'[C2 ] SliceSS( X) EF[Ca] A SliceSS(X)

> Stratification tower of the slice spectral sequence



F (E]-'[Cz], SIiceSS(X))

I

(E]-'[C4] SliceSS( X)

<0 20

: SliceSS(X)
F (Ef[c2n_l], SIiceSS(X))

T <2"—1 >2"_1

F (Ef[czn], SIiceSS(X))

> Stratification tower of the slice spectral sequence
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F (E]-'[Cz], SIiceSS(X))

I

(E]-'[C4] SliceSS( X)

T
T

F (Ef[c2n_l], SIiceSS(X))

I

F (Ef[czn], SIiceSS(X))

<0 >

TR

SliceSS(X)
/ \

>2n-1

> Stratification tower of the slice spectral sequence

o

EF[G)] A SliceSS(X)

EF[C] A SliceSS(X)

EF[Can] A SliceSS(X)

EF[Con] A SliceSS(X)

» As we go up the tower, we recover more and more regions of the

original slice spectral sequence

» Remark: we can always form such a tower for any equivariant
spectral sequence, but not guaranteed to have a recovery theorem



Stratification tower

EF[Cy] A SliceSS(X)

F (E]—'[Czn], SliceSS(X))



Real bordism theory MUy

» Application: use the stratification tower to study VU(¢) and its
quotients



Real bordism theory MUy

» Application: use the stratification tower to study VU(¢) and its
quotients

> MU is equipped with a Cy-action coming from complex conjugation
= MU (Landweber, Araki, Fujii, Hu-Kriz)



Real bordism theory MUy

» Application: use the stratification tower to study VU(¢) and its
quotients

> MU is equipped with a Cy-action coming from complex conjugation
= MU (Landweber, Araki, Fujii, Hu-Kriz)

> MU(C) .= NE (MUg)
underlying spectrum of MU(%): MU A MU A MU A MU
(a, b,c,d) — (d,a, b, c)



Real bordism theory MUy

» Application: use the stratification tower to study VU(¢) and its
quotients

> MU is equipped with a Cy-action coming from complex conjugation
= MU (Landweber, Araki, Fujii, Hu-Kriz)

> MU(C) .= NE (MUg)
underlying spectrum of MU(%): MU A MU A MU A MU
(a, b,c,d) — (d,a, b, c)

> 2-locally, BP(&) := N&' (BPy)



Real bordism theory MUy

» Application: use the stratification tower to study VU(¢) and its
quotients

> MU is equipped with a Cy-action coming from complex conjugation
= MU (Landweber, Araki, Fujii, Hu-Kriz)

> MU(C) .= NE (MUg)
underlying spectrum of MU(%): MU A MU A MU A MU
(a, b,c,d) — (d,a, b, c)

> 2-locally, BP(&) := N&' (BPy)

» These theories are very useful for resolving the Kervaire invariant
problem and for studying Lubin—Tate theories



Lubin—Tate theories

Non-equivariantly: the formal group laws associated with BP(n) give
models for E,

BP —— ... — = BP(3) BP(2) BP(1)
v; 'BP(3) v 'BP(2) v 'BP(1)

i | |

1= E> E
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» (Cyn-equivariantly, we have BP(Cr) instead of BP, and we can form
equivariant quotients BP(%") (m) (Hill-Hopkins—Ravenel)



Quotients of BP(C)

» (Cyn-equivariantly, we have BP(Cr) instead of BP, and we can form
equivariant quotients BP(%") (m) (Hill-Hopkins—Ravenel)
» These quotients have good slices

» Odd slices ~ %
» Computable even slices = computable E;-page



Models of Lubin—Tate theory

G = G, the Gy-equivariant formal group laws associated with BPg(n)
give Cy-equivariant models for E,

BPg — -+ ——— BPgr(3) ——— BPr(2) ——— BPg(1)

| | |

V5 ' BPz(3) 5 ' BPg(2) v ' BPg (1)
H i i
Es E> E;
) ) )



Models of Lubin—Tate theory

G = (4: the C4-equivariant formal group laws associated with BP((C“))(n)
give (4-equivariant models for E,,

Bp(G) , Bp((C4))<3> , BP((C4))<2> N Bp((C4))<1>

| | |

Dgl Bp((CA))<3> D;l Bp(&) (2) D{l Bp((C4))<1>
Es E, E,
-] -] -

G G G



Models of Lubin—Tate theory

Theorem (Beaudry—Hill-S.-Zeng)

The Can-equivariant formal group laws associated with BP(%") (m) are of
heights (2"~1 - m), and they give Cyn-equivariant models of Eyn-1.p,

pp(Cr) Bp((Czn))<3> R Bp((Czn))<2> N Bp((C2N))<1>

| | |

D37-21"*1 Bp(Cn) <3> D;21n—l Bp(Cn) <2> sznll Bp(Cn) <1>
E3A2n—1 E2‘2,771 E2’171

- - CJ

Con Con Con
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Models of Lubin—Tate theory

» For our models, each Ej, is equipped with the Cyn-orientation
(Hahn-S.)
BpP(&) s F,

» This induces a map of spectral sequences, which is a quotient map
on the E,-page

> Upshot: we get equivariant “geometric models” for Ej,, and they are
great for doing computations
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SliceSS(7; !BPr(1)): E..-page




Hill-Hopkins—Ravenel (£7)

LBP(C(1)):
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SliceSS(D, BP(C)(1)): E, -page
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SliceSS(BP(%)(2)): E..-page
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» The computation could get a little involved as the height increases

» Instead of computing them one at a time...
Can we find generals patterns in SliceSS(BP(¢) (m)) across different
groups and heights?

> As we vary G and m, how are the different BP(%)(m) related to
each other? Induction?
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SliceSS(v; *BPg(1)): E[“
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Same differential pattern! ds «~ ds



The Transchromatic Isomorphism Theorem

Theorem (Meier-S.—Zeng, Liu-S.-Yan)
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The Transchromatic Isomorphism Theorem

Theorem (Meier-S.—Zeng, Liu-S.-Yan)

There is a shearing isomorphism

SliceSS (DL, BP(%") (m)) <~ SliceSS (DL, BP(Gr=1) (m))

on—2.
where dp,_1 <~ d,.

> D', BP(%)(m) corresponds to Ezhncf{’m
> D;;}, BP(C-1)(m) corresponds to Ep%

2n—2m

Theorem (Meier-S.—Zeng)

There is a shearing isomorphism

SliceSS (ERS) < SliceSS (Epfs/?)

where d2,,1 oy dr.



Compute E/'® by induction
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Vanishing lines

Theorem (Duan-Li-S.)

There is a horizontal vanishing line in SIiceSS(E:CQ") and HFPSS(E:CQ")
of filtration 20" — 2" 4+ 1, and all the differentials are of lengths
< phtn _on 4 1

» It is a consequence of the nilpotence theorem
(Devinatz—Hopkins—=Smith) that there are such horizontal vanishing
lines at some finite filtration

» Theoretically useful, but in practice can't use the existence result to
prove any differentials

» Having this precise vanishing line is very useful for computations
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More vanishing lines!

» The transchromatic isomorphism, combined with the vanishing line
result, gives us another vanishing line!
> E,?G has a horizontal vanishing line

> E:/(ZG/CZ) also has a horizontal vanishing line

» Apply the shearing isomorphism = vanishing lines of slope 1 for
hG
E,
» Computationally, this imposes even more constraints on the possible
differentials



Sheared vanishing lines
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Periodicities for £/

» The theories E/'C are periodic
> E' is 8-periodic (real Bott periodicity)
> E;% is 192-periodic (K (2)-local TMF)
> E;% is 256-periodic (detection spectrum Q for Kervaire invariant)
» Question: for any height h and finite group G, what is the
periodicity of E/¢?
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Periodicity Theorem

Theorem (Duan—Hill-Li-Liu—-S.—Wang—Xu)

For any h > 1 and G a finite subgroup of Sy, Ef' is P, g-periodic.
Here, Py ¢ = % - Pp,H, where H is a 2-Sylow subgroup of G and

2 ifH=¢e
'Dh,H = 2h+"+1 if H= C2n
2hH4 i = Qg

> This gives the periodicity for £’ at all heights h and all groups G
(at the prime 2)

» This has very nice computational consequences

» If we know the end result is periodic beforehand, then we can force
differentials



ALY O]

LIy
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Y

This entire computation can be determined by transchromatic

isomorphism, vanishing lines, and periodicities
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RO(G)-periodicity

>

>

>

A key idea in the proof is to treat E, as a G-spectrum, and study
the RO(G)-graded homotopy groups 7° Ej,

When considered as a G-spectrum, there are many RO(G)-graded
periodicities for Ep,

Their linear combinations give the (integer-graded) periodicity for
EhC

Elhcz: l+o,4—40

— E/< is 8-periodic

EfS: 1404\ 4—40,16—8) 10— 4\ —20

— EJ% is 32-periodic
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RO(G)-periodicity lattice

Definition

L, ¢ = the free abelian subgroup of RO(G) (under addition) that is
generated by all V' such that Ey, is V-periodic

> L, ¢ encodes the complexity of 7rf E;,

» To completely understand ﬂ'*GEh, we just need to understand the
gradings in RO(G)/Lp ¢

> Example: Ly ¢, = Z{p2) & Z(4 — 40)
RO(G)/L1.c, = Z./8 (complexity of 72 E;)

» Example: Ly ¢, = Z{pa) & Z{4 — 40) $ Z(10 — 4\ — 20)
RO(G)/La.c, = Z./32 © Z,/2 (complexity of 75 E5)

» This is very useful in the computation of K(h)-local Picard groups
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> In general, it's hard to completely compute L, ¢ for arbitrary h and

G

» But we can analyze it inductively in two directions

%

LpH

Lps2,6/2

Lpc

» The Transchromatic Isomorphism Theorem shows that a part of
]Lh)(; iS from Lh/Z,G/Cg

> The norm functor shows that if V € Ly 4, then Ind$(V) € Ly ¢



Theorem (Duan—Hill-Li-Liu-S.-Wang—Xu)

1. When h =2""1m, the following are RO(Cyn)-periodicities of Ej:

> 1400 +2" A1+ 2" A+ + 200+ N

» 2m+1 _ 2m+1 o
» 22”7'm+n7i+1 _ 22"7'm+n7iAn7’_' 1 S i S n—1

2. When h = 4k + 2, the following are RO(Qg)-periodicities of Ep:

> 1+oitoj+ox+H
» 22k+2 + 22k+2 22k+2 22k+2

» 2h+2+2h+2 2h+1H

Ok
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Theorem (Duan—Hill-Li-Liu-S.-Wang—Xu)

1. When h =2""1m, the following are RO(Cyn)-periodicities of Ej:

> 1400 +2" A1+ 2" A+ + 200+ N

» 2m+1 _ 2m+1 o
> 22””m+n7i+1 _ 22”7’m+n7iAn7’_' 1<i<n-1

2. When h = 4k + 2, the following are RO(Qg)-periodicities of Ep:

> 14+o0i+o0j+ox+H
» 22k+2 22k+2 22k+2 22k+2

» 2h+2+2h+2 2h+1H

Ok

> L,’,\fG = lattice generated by the above periodicities
> L} is a sublattice of Ly c C RO(G)

> IL,’Y,G is a pretty good approximation to L ¢

> In fact, L}/ ; is a full rank sublattice of RO(G)



Full rank sublattice

Theorem (Duan—Hill-Li-Liu—-S.-Wang—Xu)
1. When (h, G) = (2" 1m, Cn),

n—1
RO(G)/L,’XG ~ @ Z/22””’1m+n—i D Z/2h+n+1
i=1

2. When (h, G) = (4k + 2, Qg),

RO(G)/}LhN,G o Z/22k+2 o Z/22k+3 ey Z/22k+3 o Z/24k+6



Full rank sublattice

Theorem (Duan—Hill-Li-Liu—-S.-Wang—Xu)
1. When (h,G) = (2"tm, Cn),

n—1
RO(G)/L,’XG ~ @2/22””’1m+n7i D Z/2h+n+1
i=1

2. When (h, G) = (4k + 2, @),

RO(G)/Lh,\{G o Z/22k+2 @ Z/22k+3 @ Z/22k+3 ey Z/24k+6

Corollary

The complexity of 7€ Ey, is finite, with a specific bound (given above).



Happy birthday Peter!




