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The Kervaire invariant problem

Theorem (Hill–Hopkins–Ravenel 2009)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I Start with MU((C8)) (C8-equivariant spectrum)

I Invert a certain class D: D−1MU((C8))

I Invented the equivariant slice spectral sequence to compute
π∗(D

−1MU((C8)))C8

I Detection Theorem:
π∗(D

−1MU((C8)))C8 detects the Kervaire invariant elements

I Periodicity Theorem:
π∗(D

−1MU((C8)))C8 is 256-periodic.

I Gap Theorem:
πi (D

−1MU((C8)))C8 = 0 for i = −1,−2,−3.
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Gap Theorem
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Motivation

I Motivation: computing and analyzing the slice spectral sequence of
MU((G)) and its quotients

I Question: what meaningful phenomena can we extract from the slice
spectral sequence?

I Question: what do they tell us about equivariant and chromatic
homotopy theory?
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The slice spectral sequence

I Slice tower: equivariant refinement of the Postnikov tower

I ρH : regular representation of H

I Slice cells: G+ ∧H SnρH

Dimension = underlying dimension (n|H|)
I S>n (“slice n-connected”): smallest full subcategory such that

I contains slice cells of dimension > n
I closed under taking cofibers, extensions and wedges
I Warning: not closed under taking desuspensions or fibers

I X −→ PnX “killing higher spheres”
PnX ∈ S≤n

I S≤n = {X |MapG (Y ,X ) ' ∗,Y ∈ S>n}
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The slice spectral sequence

Slice tower:

X · · · Pn+1X PnX Pn−1X · · ·

Pn+1
n+1X Pn

nX Pn−1
n−1X

E s,t
2 = πt−sP

t
tX =⇒ πt−sX



Example: a C4-slice spectral sequence
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I Observation:
I There are two different “cones” of the slice spectral sequence
I Each cone is further divided into different “regions”

I Question: what do these regions mean theoretically?

I Question: studying the entire slice spectral sequence all at once is
hard, but... can we isolate each region and study it separately?

I Answer: the generalized Tate diagram
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Tate diagram

Greenlees and May introduced the Tate diagram for any G -spectrum X :

EG+ ∧ X X ẼG ∧ X

EG+ ∧ F (EG+,X ) F (EG+,X ) ẼG ∧ F (EG+,X )

'

I ẼG is the cofiber of EG+ −→ S0

I The right square is a pullback square (Tate square)

I This is a powerful tool in equivariant homotopy theory



Tate diagram

Greenlees and May introduced the Tate diagram for any G -spectrum X :

EG+ ∧ X X ẼG ∧ X
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Tate diagram

XhG XG (ẼG ∧ X )G

XhG X hG X tG

'

I The Tate diagram gives relations among different equivariant
constructions associated with X

I XG : fixed point
I XhG : homotopy orbit
I X hG : homotopy fixed point
I X tG : Tate fixed point
I (ẼG ∧ X )G : geometric fixed point (when |G | = p)

I We can decompose X into “easier pieces”, analyze them
individually, and “glue” them back using the Tate diagram
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XhG XG (ẼG ∧ X )G

XhG X hG X tG

'

I The Tate diagram gives relations among different equivariant
constructions associated with X
I XG : fixed point
I XhG : homotopy orbit
I X hG : homotopy fixed point
I X tG : Tate fixed point
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Generalized Tate diagram

I For F a family of subgroups of G , Greenlees and May further
introduced the generalized Tate diagram

EF+ ∧ X X ẼF ∧ X

EF+ ∧ F (EF+,X ) F (EF+,X ) ẼF ∧ F (EF+,X )

'

I EF is the unique G -space characterized by the property{
(EF)H ' ∗ if H ∈ F
(EF)H = ∅ otherwise

I When F = {e}, EF = EG , and we get the classical Tate diagram
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Localized slice spectral sequence

I The spectral sequence associated to ẼF ∧ P•X is called the
localized slice spectral sequence

I For N a normal subgroup of G , set
F = F [N]: family of all subgroups of G not containing N

I The localized slice spectral sequence converges strongly to the
homotopy groups of (ẼF [N] ∧ X )G = ΦN(X )G/N
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N = C4: ΦC4(X )
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Three observations

I Observation 1:
In general, geometric fixed points are easier to compute than fixed
points

I Observation 2:
While computing the localized slice spectral sequences ẼF ∧ P•X
(easier), we can actually recover the positive cone of the original
slice spectral sequence P•X (harder)

I Observation 3:
The same holds for the negative cone, by using the spectral
sequence F (ẼF ,P•X ) from the generalized Tate diagram
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(easier), we can actually recover the positive cone of the original
slice spectral sequence P•X (harder)

I Observation 3:
The same holds for the negative cone, by using the spectral
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Slice Recovery Theorem

Theorem (Meier–S.–Zeng, Liu–S.–Yan)

1. In the positive cone, the map

SliceSS(X ) −→ ẼF [N] ∧ SliceSS(X )

induces an isomorphism of spectral sequences on or above the line of
slope (h − 1). Here, h is the order of the largest subgroup in F [N].

2. In the negative cone, the map

F (ẼF [N],SliceSS(X )) −→ SliceSS(X )

induces an isomorphism of spectral sequences on or below the line of
slope (h − 1).
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I As we go up the tower, we recover more and more regions of the
original slice spectral sequence

I Remark: we can always form such a tower for any equivariant
spectral sequence, but not guaranteed to have a recovery theorem
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ẼF [C2n ], SliceSS(X )

)
ẼF [C2n ] ∧ SliceSS(X )

≤0

≤1

≥0

≥1

≥2n−1≤2n−1

I Stratification tower of the slice spectral sequence
I As we go up the tower, we recover more and more regions of the

original slice spectral sequence

I Remark: we can always form such a tower for any equivariant
spectral sequence, but not guaranteed to have a recovery theorem



F
(
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Real bordism theory MUR

I Application: use the stratification tower to study MU((G)) and its
quotients

I MU is equipped with a C2-action coming from complex conjugation
=⇒ MUR (Landweber, Araki, Fujii, Hu–Kriz)

I MU((G)) := NG
C2

(MUR)

underlying spectrum of MU((C8)): MU ∧MU ∧MU ∧MU
(a, b, c , d) 7−→ (d̄ , a, b, c)

I 2-locally, BP((C2n )) := NC2n

C2
(BPR)

I These theories are very useful for resolving the Kervaire invariant
problem and for studying Lubin–Tate theories
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Lubin–Tate theories

Non-equivariantly: the formal group laws associated with BP〈n〉 give
models for En

BP · · · BP〈3〉 BP〈2〉 BP〈1〉

v−1
3 BP〈3〉 v−1

2 BP〈2〉 v−1
1 BP〈1〉

E3 E2 E1



Quotients of BP ((C2n))

I C2n -equivariantly, we have BP((C2n )) instead of BP, and we can form
equivariant quotients BP((C2n ))〈m〉 (Hill–Hopkins–Ravenel)

I These quotients have good slices
I Odd slices ' ∗
I Computable even slices =⇒ computable E2-page
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Models of Lubin–Tate theory

G = C4: the C4-equivariant formal group laws associated with BP((C4))〈n〉
give C4-equivariant models for E2n

BP((C4)) BP((C4))〈3〉 BP((C4))〈2〉 BP((C4))〈1〉

D−1
6 BP((C4))〈3〉 D−1

4 BP((C4))〈2〉 D−1
2 BP((C4))〈1〉

E6 E4 E2

C4 C4 C4



Models of Lubin–Tate theory

Theorem (Beaudry–Hill–S.–Zeng)

The C2n -equivariant formal group laws associated with BP((C2n ))〈m〉 are of
heights (2n−1 ·m), and they give C2n -equivariant models of E2n−1·m

BP((C2n )) BP((C2n ))〈3〉 BP((C2n ))〈2〉 BP((C2n ))〈1〉

D−1
3·2n−1BP

((C2n ))〈3〉 D−1
2·2n−1BP

((C2n ))〈2〉 D−1
2n−1BP

((C2n ))〈1〉

E3·2n−1 E2·2n−1 E2n−1

C2n C2n C2n



Models of Lubin–Tate theory

I For our models, each Eh is equipped with the C2n -orientation
(Hahn–S.)

BP((C2n )) −→ Eh

I This induces a map of spectral sequences, which is a quotient map
on the E2-page

I Upshot: we get equivariant “geometric models” for Eh, and they are
great for doing computations
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SliceSS(BP ((C4))〈2〉): Hill–S.–Wang–Xu (E hC4

4 )
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I The computation could get a little involved as the height increases

I Instead of computing them one at a time...
Can we find generals patterns in SliceSS(BP((G))〈m〉) across different
groups and heights?

I As we vary G and m, how are the different BP((G))〈m〉 related to
each other? Induction?
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SliceSS(D−1
2 BP ((C4))〈1〉): E hC4
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SliceSS(v̄−1
1 BPR〈1〉): E hC2
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The Transchromatic Isomorphism Theorem

Theorem (Meier–S.–Zeng, Liu–S.–Yan)

There is a shearing isomorphism

SliceSS
(
D−12n−1·mBP

((C2n ))〈m〉
)

SliceSS
(
D−12n−2·mBP

((C2n−1 ))〈m〉
)

where d2r−1 ! dr .

I D−12n−1·mBP
((C2n ))〈m〉 corresponds to E hC2n

2n−1m

I D−12n−2·mBP
((C2n−1 ))〈m〉 corresponds to E

hC2n−1

2n−2m

Theorem (Meier–S.–Zeng)

There is a shearing isomorphism

SliceSS
(
E hG
h

)
SliceSS

(
E

h (G/C2)
h/2

)
where d2r−1 ! dr .
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Compute E hG
h by induction

EhC2
1

EhC2
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EhC8
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EhC4
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EhC4
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Vanishing lines

Theorem (Duan–Li–S.)

There is a horizontal vanishing line in SliceSS(E hC2n

h ) and HFPSS(E hC2n

h )
of filtration 2h+n − 2n + 1, and all the differentials are of lengths
≤ 2h+n − 2n + 1.

I It is a consequence of the nilpotence theorem
(Devinatz–Hopkins–Smith) that there are such horizontal vanishing
lines at some finite filtration

I Theoretically useful, but in practice can’t use the existence result to
prove any differentials

I Having this precise vanishing line is very useful for computations
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More vanishing lines!

I The transchromatic isomorphism, combined with the vanishing line
result, gives us another vanishing line!

I E hG
h has a horizontal vanishing line

I E
h (G/C2)
h/2 also has a horizontal vanishing line

I Apply the shearing isomorphism =⇒ vanishing lines of slope 1 for
E hG
h

I Computationally, this imposes even more constraints on the possible
differentials
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Sheared vanishing lines
EhC2

1

EhC2
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EhC8
4

EhC4
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EhC8
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Periodicities for E hG
h

I The theories E hG
h are periodic

I E hC2
1 is 8-periodic (real Bott periodicity)

I E hG24
2 is 192-periodic (K(2)-local TMF )

I E hC8
4 is 256-periodic (detection spectrum Ω for Kervaire invariant)

I Question: for any height h and finite group G , what is the
periodicity of E hG

h ?
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Periodicity Theorem

Theorem (Duan–Hill–Li–Liu–S.–Wang–Xu)

For any h ≥ 1 and G a finite subgroup of Sh, E hG
h is Ph,G -periodic.

Here, Ph,G := |G |
|H| · Ph,H , where H is a 2-Sylow subgroup of G and

Ph,H :=


2 if H = e
2h+n+1 if H = C2n

2h+4 if H = Q8

I This gives the periodicity for E hG
h at all heights h and all groups G

(at the prime 2)

I This has very nice computational consequences

I If we know the end result is periodic beforehand, then we can force
differentials
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This entire computation can be determined by transchromatic
isomorphism, vanishing lines, and periodicities



RO(G )-periodicity

I A key idea in the proof is to treat Eh as a G -spectrum, and study
the RO(G )-graded homotopy groups πG

? Eh

I When considered as a G -spectrum, there are many RO(G )-graded
periodicities for Eh

I Their linear combinations give the (integer-graded) periodicity for
E hG
h

I E hC2
1 : 1 + σ, 4− 4σ

=⇒ E hC2
1 is 8-periodic

I E hC4
2 : 1 + σ + λ, 4− 4σ, 16− 8λ, 10− 4λ− 2σ

=⇒ E hC4
2 is 32-periodic
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RO(G )-periodicity lattice

Definition

Lh,G = the free abelian subgroup of RO(G ) (under addition) that is
generated by all V such that Eh is V -periodic

I Lh,G encodes the complexity of πG
? Eh

I To completely understand πG
? Eh, we just need to understand the

gradings in RO(G )/Lh,G

I Example: L1,C2 = Z〈ρ2〉 ⊕ Z〈4− 4σ〉
RO(C2)/L1,C2 = Z/8 (complexity of πC2

? E1)

I Example: L2,C4 = Z〈ρ4〉 ⊕ Z〈4− 4σ〉 ⊕ Z〈10− 4λ− 2σ〉
RO(C4)/L2,C4 = Z/32⊕ Z/2 (complexity of πC4

? E2)

I This is very useful in the computation of K (h)-local Picard groups
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I In general, it’s hard to completely compute Lh,G for arbitrary h and
G

I But we can analyze it inductively in two directions

Lh/2,G/2

Lh,G

Lh,H

Transchromatic

NG
H (−)

I The Transchromatic Isomorphism Theorem shows that a part of
Lh,G is from Lh/2,G/C2

I The norm functor shows that if V ∈ Lh,H , then IndG
H(V ) ∈ Lh,G
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Theorem (Duan–Hill–Li–Liu–S.–Wang–Xu)

1. When h = 2n−1m, the following are RO(C2n)-periodicities of Eh:
I 1 + σ2n + 2n−2λn−1 + 2n−3λn−2 + · · ·+ 2λ2 + λ1

I 2m+1 − 2m+1σ2n

I 22n−im+n−i+1 − 22n−im+n−iλn−i , 1 ≤ i ≤ n − 1

2. When h = 4k + 2, the following are RO(Q8)-periodicities of Eh:
I 1 + σi + σj + σk + H
I 22k+2 + 22k+2σi − 22k+2σj − 22k+2σk

I 2h+2 + 2h+2σi − 2h+1H.

I LN
h,G = lattice generated by the above periodicities

I LN
h,G is a sublattice of Lh,G ⊂ RO(G )

I LN
h,G is a pretty good approximation to Lh,G

I In fact, LN
h,G is a full rank sublattice of RO(G )
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Full rank sublattice

Theorem (Duan–Hill–Li–Liu–S.–Wang–Xu)

1. When (h,G ) = (2n−1m,C2n),

RO(G )/LN
h,G
∼=

n−1⊕
i=1

Z/22n−i−1m+n−i ⊕ Z/2h+n+1

2. When (h,G ) = (4k + 2,Q8),

RO(G )/LN
h,G
∼= Z/22k+2 ⊕ Z/22k+3 ⊕ Z/22k+3 ⊕ Z/24k+6

Corollary

The complexity of πG
? Eh is finite, with a specific bound (given above).
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Happy birthday Peter!


