Periodicity, vanishing lines, and transchromatic phenomena in chromatic homotopy theory

XiaoLin Danny Shi

University of Washington

March 2025

he Oliver transfer

Theorem Let $H \subset G$, $\pi: X/H \longrightarrow X/G$. For $n \ge 0$, there is a transfer map

 $\tau \colon \widetilde{H}^{n}(X/H; A) \longrightarrow \widetilde{H}^{n}(X/G; A)$

such that $\tau \circ \pi^*$ is multiplication by $\chi(G/H)$

Proof of the Conner conjecture. Take H = N. The composite

 $\widetilde{H}^{n}(X/G; A) \xrightarrow{\pi^{*}} \widetilde{H}^{n}(X/N; A) \xrightarrow{\tau} \widetilde{H}^{n}(X/G; A)$

the identity and $\tilde{H}^{n}(X/N; A) = 0$.

How do we get the Oliver transfer?

Theorem (Hill-Hopkins-Ravenel 2009)

Theorem (Hill-Hopkins-Ravenel 2009)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

▶ Start with *MU*^{((C₈)} (*C*₈-equivariant spectrum)

Theorem (Hill-Hopkins-Ravenel 2009)

- ► Start with *MU*^{((C₈)} (*C*₈-equivariant spectrum)
- ► Invert a certain class $D: D^{-1}MU^{((C_8))}$

Theorem (Hill-Hopkins-Ravenel 2009)

- ▶ Start with *MU*^{((C₈)} (*C*₈-equivariant spectrum)
- ▶ Invert a certain class $D: D^{-1}MU^{((C_8))}$
- ► Invented the equivariant slice spectral sequence to compute $\pi_*(D^{-1}MU^{((C_8))})^{C_8}$

Theorem (Hill-Hopkins-Ravenel 2009)

- ▶ Start with *MU*^{((C₈)} (*C*₈-equivariant spectrum)
- ▶ Invert a certain class $D: D^{-1}MU^{((C_8))}$
- ► Invented the equivariant slice spectral sequence to compute $\pi_*(D^{-1}MU^{((C_8))})^{C_8}$
- Detection Theorem: $\pi_*(D^{-1}MU^{((C_8))})^{C_8}$ detects the Kervaire invariant elements

Theorem (Hill-Hopkins-Ravenel 2009)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

- ▶ Start with *MU*^{((C₈))} (*C*₈-equivariant spectrum)
- ▶ Invert a certain class D: $D^{-1}MU^{((C_8))}$
- ► Invented the equivariant slice spectral sequence to compute $\pi_*(D^{-1}MU^{((C_8))})^{C_8}$
- Detection Theorem: $\pi_*(D^{-1}MU^{((C_8))})^{C_8}$ detects the Kervaire invariant elements

Periodicity Theorem: π_{*}(D⁻¹MU^{((C₈))})^{C₈} is 256-periodic.

Theorem (Hill-Hopkins-Ravenel 2009)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

- ▶ Start with *MU*^{((C₈)} (*C*₈-equivariant spectrum)
- ▶ Invert a certain class $D: D^{-1}MU^{((C_8))}$
- ► Invented the equivariant slice spectral sequence to compute $\pi_*(D^{-1}MU^{((C_8))})^{C_8}$
- Detection Theorem: $\pi_*(D^{-1}MU^{((C_8))})^{C_8}$ detects the Kervaire invariant elements

• Periodicity Theorem: $\pi_*(D^{-1}MU^{((C_8))})^{C_8}$ is 256-periodic.

• Gap Theorem: $\pi_i (D^{-1} M U^{((C_8))})^{C_8} = 0$ for i = -1, -2, -3.

Motivational Picture

Motivation

Motivation

- Motivation: computing and analyzing the slice spectral sequence of MU^{((G))} and its quotients
- Question: what meaningful phenomena can we extract from the slice spectral sequence?

Motivation

- Motivation: computing and analyzing the slice spectral sequence of MU^{((G))} and its quotients
- Question: what meaningful phenomena can we extract from the slice spectral sequence?
- Question: what do they tell us about equivariant and chromatic homotopy theory?

X: G-spectrum
H ⊆ G, take fixed points X^H

- ► X: G-spectrum
- $H \subseteq G$, take fixed points X^H
- $\pi_* X^H$ form a Mackey functor: $\underline{\pi}_* X$

- ► X: G-spectrum
- $H \subseteq G$, take fixed points X^H
- $\pi_* X^H$ form a Mackey functor: $\underline{\pi}_* X$
- The slice spectral sequence computes $\underline{\pi}_* X$

Slice tower: equivariant refinement of the Postnikov tower

- Slice tower: equivariant refinement of the Postnikov tower
- \triangleright ρ_H : regular representation of H

Slice tower: equivariant refinement of the Postnikov tower

- \triangleright ρ_H : regular representation of H
- Slice cells: G₊ ∧_H S^{nρ_H} Dimension = underlying dimension (n|H|)

- Slice tower: equivariant refinement of the Postnikov tower
- \triangleright ρ_H : regular representation of H
- Slice cells: G₊ ∧_H S^{nρ_H} Dimension = underlying dimension (n|H|)
- ▶ $S_{>n}$ ("slice *n*-connected"): smallest full subcategory such that
 - contains slice cells of dimension > n
 - closed under taking cofibers, extensions and wedges
 - Warning: not closed under taking desuspensions or fibers

- Slice tower: equivariant refinement of the Postnikov tower
- \triangleright ρ_H : regular representation of H
- Slice cells: G₊ ∧_H S^{nρ_H} Dimension = underlying dimension (n|H|)
- ▶ $S_{>n}$ ("slice *n*-connected"): smallest full subcategory such that
 - contains slice cells of dimension > n
 - closed under taking cofibers, extensions and wedges
 - Warning: not closed under taking desuspensions or fibers
- ► $X \longrightarrow P^n X$ "killing higher spheres" $P^n X \in S_{\leq n}$

- Slice tower: equivariant refinement of the Postnikov tower
- \triangleright ρ_H : regular representation of H
- Slice cells: G₊ ∧_H S^{nρ_H} Dimension = underlying dimension (n|H|)
- ▶ $S_{>n}$ ("slice *n*-connected"): smallest full subcategory such that
 - contains slice cells of dimension > n
 - closed under taking cofibers, extensions and wedges
 - Warning: not closed under taking desuspensions or fibers

►
$$X \longrightarrow P^n X$$
 "killing higher spheres"
 $P^n X \in S_{\leq n}$

$$\blacktriangleright \ \mathcal{S}_{\leq n} = \{X \mid Map_G(Y, X) \simeq *, Y \in \mathcal{S}_{>n}\}$$

Slice tower:

Example: a C_4 -slice spectral sequence

- There are two different "cones" of the slice spectral sequence
- Each cone is further divided into different "regions"

- There are two different "cones" of the slice spectral sequence
- Each cone is further divided into different "regions"
- Question: what do these regions mean theoretically?

- There are two different "cones" of the slice spectral sequence
- Each cone is further divided into different "regions"
- Question: what do these regions mean theoretically?
- Question: studying the entire slice spectral sequence all at once is hard, but... can we isolate each region and study it separately?

- There are two different "cones" of the slice spectral sequence
- Each cone is further divided into different "regions"
- Question: what do these regions mean theoretically?
- Question: studying the entire slice spectral sequence all at once is hard, but... can we isolate each region and study it separately?
- Answer: the generalized Tate diagram

Greenlees and May introduced the Tate diagram for any G-spectrum X:

Greenlees and May introduced the Tate diagram for any G-spectrum X:

• $\widetilde{E}G$ is the cofiber of $EG_+ \longrightarrow S^0$

Greenlees and May introduced the Tate diagram for any G-spectrum X:

- $\widetilde{E}G$ is the cofiber of $EG_+ \longrightarrow S^0$
- The right square is a pullback square (Tate square)

Greenlees and May introduced the Tate diagram for any G-spectrum X:

$$\begin{array}{cccc} EG_{+} \land X & \longrightarrow & X & \longrightarrow & \widetilde{E}G \land X \\ & \downarrow^{\simeq} & \downarrow & & \downarrow \\ EG_{+} \land F(EG_{+}, X) & \longrightarrow & F(EG_{+}, X) & \longrightarrow & \widetilde{E}G \land F(EG_{+}, X) \end{array}$$

- $\widetilde{E}G$ is the cofiber of $EG_+ \longrightarrow S^0$
- The right square is a pullback square (Tate square)
- This is a powerful tool in equivariant homotopy theory

The Tate diagram gives relations among different equivariant constructions associated with X
Tate diagram

- The Tate diagram gives relations among different equivariant constructions associated with X
 - ► X^G: fixed point
 - X_{hG}: homotopy orbit
 - X^{hG}: homotopy fixed point
 - ► X^{tG}: Tate fixed point
 - $(\widetilde{E}G \wedge X)^{G}$: geometric fixed point (when |G| = p)

Tate diagram

- The Tate diagram gives relations among different equivariant constructions associated with X
 - ► X^G: fixed point
 - X_{hG}: homotopy orbit
 - ► X^{hG}: homotopy fixed point
 - ► X^{tG}: Tate fixed point
 - $(\widetilde{E}G \wedge X)^G$: geometric fixed point (when |G| = p)
- We can decompose X into "easier pieces", analyze them individually, and "glue" them back using the Tate diagram

► For *F* a family of subgroups of *G*, Greenlees and May further introduced the generalized Tate diagram

► For *F* a family of subgroups of *G*, Greenlees and May further introduced the generalized Tate diagram

$$\begin{array}{cccc} E\mathcal{F}_{+} \land X & \longrightarrow & X & \longrightarrow & \widetilde{E}\mathcal{F} \land X \\ & \downarrow & & \downarrow & & \downarrow \\ E\mathcal{F}_{+} \land F(E\mathcal{F}_{+}, X) & \longrightarrow & F(E\mathcal{F}_{+}, X) & \longrightarrow & \widetilde{E}\mathcal{F} \land F(E\mathcal{F}_{+}, X) \end{array}$$

► *EF* is the unique *G*-space characterized by the property

$$\begin{cases} (E\mathcal{F})^H \simeq * & \text{if } H \in \mathcal{F} \\ (E\mathcal{F})^H = \varnothing & \text{otherwise} \end{cases}$$

► For *F* a family of subgroups of *G*, Greenlees and May further introduced the generalized Tate diagram

$$\begin{array}{cccc} E\mathcal{F}_{+} \land X & \longrightarrow & X & \longrightarrow & \widetilde{E}\mathcal{F} \land X \\ & \downarrow^{\simeq} & \downarrow & & \downarrow \\ E\mathcal{F}_{+} \land F(E\mathcal{F}_{+}, X) & \longrightarrow & F(E\mathcal{F}_{+}, X) & \longrightarrow & \widetilde{E}\mathcal{F} \land F(E\mathcal{F}_{+}, X) \end{array}$$

► *EF* is the unique *G*-space characterized by the property

$$\begin{cases} (E\mathcal{F})^H \simeq * & \text{if } H \in \mathcal{F} \\ (E\mathcal{F})^H = \emptyset & \text{otherwise} \end{cases}$$

• When $\mathcal{F} = \{e\}$, $E\mathcal{F} = EG$, and we get the classical Tate diagram

Observation: if we replace X by the slice tower P_•X, then the generalized Tate diagram becomes a diagram of filtered G-spectra

Observation: if we replace X by the slice tower P_•X, then the generalized Tate diagram becomes a diagram of filtered G-spectra

$$\begin{array}{cccc} E\mathcal{F}_{+} \wedge P_{\bullet}X & \longrightarrow & P_{\bullet}X & \longrightarrow & \widetilde{E}\mathcal{F} \wedge P_{\bullet}X \\ & \downarrow^{\simeq} & \downarrow & & \downarrow \\ E\mathcal{F}_{+} \wedge F(E\mathcal{F}_{+}, P_{\bullet}X) & \longrightarrow & F(E\mathcal{F}_{+}, P_{\bullet}X) & \longrightarrow & \widetilde{E}\mathcal{F} \wedge F(E\mathcal{F}_{+}, P_{\bullet}X) \end{array}$$

This induces a diagram of equivariant spectral sequences

Observation: if we replace X by the slice tower P_•X, then the generalized Tate diagram becomes a diagram of filtered G-spectra

$$\begin{array}{cccc} E\mathcal{F}_{+} \wedge P_{\bullet}X & \longrightarrow & P_{\bullet}X & \longrightarrow & \widetilde{E}\mathcal{F} \wedge P_{\bullet}X \\ & & \downarrow & & \downarrow \\ E\mathcal{F}_{+} \wedge F(E\mathcal{F}_{+}, P_{\bullet}X) & \longrightarrow & F(E\mathcal{F}_{+}, P_{\bullet}X) & \longrightarrow & \widetilde{E}\mathcal{F} \wedge F(E\mathcal{F}_{+}, P_{\bullet}X) \end{array}$$

- This induces a diagram of equivariant spectral sequences
- We can use this diagram to analyze the equivariant slice spectral sequence SliceSS(X)

Observation: if we replace X by the slice tower P_•X, then the generalized Tate diagram becomes a diagram of filtered G-spectra

$$\begin{array}{cccc} E\mathcal{F}_{+} \land \mathcal{P}_{\bullet}X & \longrightarrow & \mathcal{P}_{\bullet}X & \longrightarrow & \widetilde{E}\mathcal{F} \land \mathcal{P}_{\bullet}X \\ & & \downarrow & & \downarrow & & \downarrow \\ E\mathcal{F}_{+} \land \mathcal{F}(E\mathcal{F}_{+}, \mathcal{P}_{\bullet}X) & \longrightarrow & \mathcal{F}(E\mathcal{F}_{+}, \mathcal{P}_{\bullet}X) & \longrightarrow & \widetilde{E}\mathcal{F} \land \mathcal{F}(E\mathcal{F}_{+}, \mathcal{P}_{\bullet}X) \end{array}$$

- This induces a diagram of equivariant spectral sequences
- We can use this diagram to analyze the equivariant slice spectral sequence SliceSS(X)

• Example:
$$P_{\bullet}X \longrightarrow \widetilde{E}\mathcal{F} \wedge P_{\bullet}X$$

Localized slice spectral sequence

► The spectral sequence associated to *ẼF* ∧ *P*•*X* is called the localized slice spectral sequence

Localized slice spectral sequence

- ► The spectral sequence associated to *EF* ∧ *P*•*X* is called the localized slice spectral sequence
- For N a normal subgroup of G, set F = F[N]: family of all subgroups of G not containing N

Localized slice spectral sequence

- ► The spectral sequence associated to *EF* ∧ *P*•*X* is called the localized slice spectral sequence
- For N a normal subgroup of G, set $\mathcal{F} = \mathcal{F}[N]$: family of all subgroups of G not containing N
- The localized slice spectral sequence converges strongly to the homotopy groups of (*ẼF*[*N*] ∧ *X*)^{*G*} = Φ^N(*X*)^{*G*/N}

Example: $G = C_4$

Example: $G = C_4$

• X: C₄-spectrum
• N = C₄:
$$\widetilde{E}\mathcal{F}[C_4] \wedge P_{\bullet}X \Longrightarrow \pi_*\Phi^{C_4}(X)$$

Example: $G = C_4$

► X: C₄-spectrum
► N = C₄:
$$\widetilde{E}\mathcal{F}[C_4] \land P_{\bullet}X \Longrightarrow \pi_*\Phi^{C_4}(X)$$

► N = C₂: $\widetilde{E}\mathcal{F}[C_2] \land P_{\bullet}X \Longrightarrow \pi_*\Phi^{C_2}(X)^{C_4/C_2}$

Three observations

► Observation 1:

In general, geometric fixed points are easier to compute than fixed points

Three observations

Observation 1:

In general, geometric fixed points are easier to compute than fixed points

Observation 2:

While computing the localized slice spectral sequences $\widetilde{EF} \wedge P_{\bullet}X$ (easier), we can actually recover the positive cone of the original slice spectral sequence $P_{\bullet}X$ (harder)

Three observations

Observation 1:

In general, geometric fixed points are easier to compute than fixed points

Observation 2:

While computing the localized slice spectral sequences $\widetilde{EF} \wedge P_{\bullet}X$ (easier), we can actually recover the positive cone of the original slice spectral sequence $P_{\bullet}X$ (harder)

Observation 3:

The same holds for the negative cone, by using the spectral sequence $F(\tilde{E}\mathcal{F}, P_{\bullet}X)$ from the generalized Tate diagram

Slice Recovery Theorem

Theorem (Meier–S.–Zeng, Liu–S.–Yan)

1. In the positive cone, the map

$$SliceSS(X) \longrightarrow \widetilde{E}\mathcal{F}[N] \land SliceSS(X)$$

induces an isomorphism of spectral sequences on or above the line of slope (h-1). Here, h is the order of the largest subgroup in $\mathcal{F}[N]$.

Slice Recovery Theorem

Theorem (Meier–S.–Zeng, Liu–S.–Yan)

1. In the positive cone, the map

$$SliceSS(X) \longrightarrow \widetilde{E}\mathcal{F}[N] \land SliceSS(X)$$

induces an isomorphism of spectral sequences on or above the line of slope (h - 1). Here, h is the order of the largest subgroup in F[N].
2. In the negative cone, the map

$$F(\widetilde{E}\mathcal{F}[N], \operatorname{SliceSS}(X)) \longrightarrow \operatorname{SliceSS}(X)$$

induces an isomorphism of spectral sequences on or below the line of slope (h-1).

Stratification tower of the slice spectral sequence

- Stratification tower of the slice spectral sequence
- As we go up the tower, we recover more and more regions of the original slice spectral sequence

- Stratification tower of the slice spectral sequence
- As we go up the tower, we recover more and more regions of the original slice spectral sequence
- Remark: we can always form such a tower for any equivariant spectral sequence, but not guaranteed to have a recovery theorem

Application: use the stratification tower to study MU^{((G))} and its quotients

Application: use the stratification tower to study MU^{((G))} and its quotients

► MU is equipped with a C_2 -action coming from complex conjugation $\implies MU_{\mathbb{R}}$ (Landweber, Araki, Fujii, Hu–Kriz)

- Application: use the stratification tower to study MU^{((G))} and its quotients
- ▶ MU is equipped with a C_2 -action coming from complex conjugation $\implies MU_{\mathbb{R}}$ (Landweber, Araki, Fujii, Hu–Kriz)
- ► $MU^{((G))} := N_{C_2}^G(MU_{\mathbb{R}})$ underlying spectrum of $MU^{((C_8))}$: $MU \land MU \land MU \land MU$ $(a, b, c, d) \longmapsto (\bar{d}, a, b, c)$

- Application: use the stratification tower to study MU^{((G))} and its quotients
- ▶ MU is equipped with a C_2 -action coming from complex conjugation $\implies MU_{\mathbb{R}}$ (Landweber, Araki, Fujii, Hu–Kriz)
- $MU^{((G))} := N^{G}_{C_{2}}(MU_{\mathbb{R}})$ underlying spectrum of $MU^{((C_{8}))}$: $MU \land MU \land MU \land MU$ $(a, b, c, d) \longmapsto (\bar{d}, a, b, c)$

• 2-locally,
$$BP^{((C_{2^n}))} := N_{C_2}^{C_{2^n}}(BP_{\mathbb{R}})$$

- Application: use the stratification tower to study MU^{((G))} and its quotients
- ▶ MU is equipped with a C_2 -action coming from complex conjugation $\implies MU_{\mathbb{R}}$ (Landweber, Araki, Fujii, Hu–Kriz)
- ► $MU^{((G))} := N^G_{C_2}(MU_{\mathbb{R}})$ underlying spectrum of $MU^{((C_3))}$: $MU \land MU \land MU \land MU$ $(a, b, c, d) \mapsto (\overline{d}, a, b, c)$

• 2-locally,
$$BP^{((C_{2^n}))} := N_{C_2}^{C_{2^n}}(BP_{\mathbb{R}})$$

These theories are very useful for resolving the Kervaire invariant problem and for studying Lubin–Tate theories

Lubin–Tate theories

Non-equivariantly: the formal group laws associated with $BP\langle n \rangle$ give models for E_n

Quotients of $BP^{((C_{2^n}))}$

► C_{2^n} -equivariantly, we have $BP^{((C_{2^n}))}$ instead of BP, and we can form equivariant quotients $BP^{((C_{2^n}))}(m)$ (Hill–Hopkins–Ravenel)

Quotients of $BP^{((C_{2^n}))}$

- ► C_{2^n} -equivariantly, we have $BP^{((C_{2^n}))}$ instead of BP, and we can form equivariant quotients $BP^{((C_{2^n}))}(m)$ (Hill–Hopkins–Ravenel)
- These quotients have good slices
 - Odd slices $\simeq *$
 - Computable even slices \implies computable E_2 -page
$G = C_2$: the C_2 -equivariant formal group laws associated with $BP_{\mathbb{R}}\langle n \rangle$ give C_2 -equivariant models for E_n

 $G = C_4$: the C_4 -equivariant formal group laws associated with $BP^{((C_4))}(n)$ give C_4 -equivariant models for E_{2n}

Theorem (Beaudry–Hill–S.–Zeng)

The C_{2^n} -equivariant formal group laws associated with $BP^{((C_{2^n}))}(m)$ are of heights $(2^{n-1} \cdot m)$, and they give C_{2^n} -equivariant models of $E_{2^{n-1} \cdot m}$

► For our models, each E_h is equipped with the C_{2n}-orientation (Hahn-S.)

 $BP^{((C_{2^n}))} \longrightarrow E_h$

- ► For our models, each E_h is equipped with the C_{2ⁿ}-orientation (Hahn-S.) $BP^{((C_{2^n}))} → E_h$
- This induces a map of spectral sequences, which is a quotient map on the E₂-page

▶ For our models, each E_h is equipped with the C_{2ⁿ}-orientation (Hahn-S.)

 $BP^{((C_{2^n}))} \longrightarrow E_h$

- This induces a map of spectral sequences, which is a quotient map on the E₂-page
- Upshot: we get equivariant "geometric models" for E_h, and they are great for doing computations

$\mathsf{SliceSS}(\bar{v}_1^{-1}BP_{\mathbb{R}}\langle 1 \rangle)$: Dugger $(E_1^{hC_2} = KO_2^{\wedge})$

$\mathsf{SliceSS}(ar{v}_1^{-1}BP_{\mathbb{R}}\langle 1 \rangle): E_{\infty}\text{-page}$

SliceSS $(D_2^{-1}BP^{((C_4))}\langle 1\rangle)$: Hill-Hopkins-Ravenel $(E_2^{hC_4})$

SliceSS $(D_2^{-1}BP^{((C_4))}\langle 1 \rangle)$: E_{∞} -page

SliceSS($BP^{((C_4))}(2\rangle)$): E_{∞} -page

▶ The computation could get a little involved as the height increases

- The computation could get a little involved as the height increases
- Instead of computing them one at a time... Can we find generals patterns in SliceSS(BP^{((G))}(m)) across different groups and heights?

- The computation could get a little involved as the height increases
- Instead of computing them one at a time... Can we find generals patterns in SliceSS(BP^{((G))}(m)) across different groups and heights?
- As we vary G and m, how are the different BP((G)) (m) related to each other? Induction?

 $\mathsf{SliceSS}(D_2^{-1}BP^{((C_4))}\langle 1\rangle): \ E_2^{hC_4}$

$\mathsf{SliceSS}(\bar{v}_1^{-1}BP_{\mathbb{R}}\langle 1 \rangle): E_1^{hC_2}$

Same differential pattern! $d_3 \iff d_5$

The Transchromatic Isomorphism Theorem

Theorem (Meier–S.–Zeng, Liu–S.–Yan)

There is a shearing isomorphism

 $\mathsf{SliceSS}\left(D_{2^{n-1} \cdot m}^{-1} BP^{(\!(C_{2^n})\!)}\langle m \rangle\right) \iff \mathsf{SliceSS}\left(D_{2^{n-2} \cdot m}^{-1} BP^{(\!(C_{2^{n-1}})\!)}\langle m \rangle\right)$

where $d_{2r-1} \iff d_r$.

The Transchromatic Isomorphism Theorem

Theorem (Meier–S.–Zeng, Liu–S.–Yan)

There is a shearing isomorphism

 $\mathsf{SliceSS}\left(D_{2^{n-1} \cdot m}^{-1} BP^{(\!(C_{2^n})\!)}\langle m \rangle\right) \iff \mathsf{SliceSS}\left(D_{2^{n-2} \cdot m}^{-1} BP^{(\!(C_{2^{n-1}})\!)}\langle m \rangle\right)$

where $d_{2r-1} \iff d_r$.

►
$$D_{2^{n-1}\cdot m}^{-1} BP^{((C_{2^n}))}\langle m \rangle$$
 corresponds to $E_{2^{n-1}m}^{hC_{2^n}}$
► $D_{2^{n-2}\cdot m}^{-1} BP^{((C_{2^{n-1}}))}\langle m \rangle$ corresponds to $E_{2^{n-2}m}^{hC_{2^{n-1}}}$

The Transchromatic Isomorphism Theorem

Theorem (Meier–S.–Zeng, Liu–S.–Yan)

There is a shearing isomorphism

 $\mathsf{SliceSS}\left(D_{2^{n-1}\cdot m}^{-1}BP^{(\!(C_{2^n})\!)}\langle m\rangle\right) \nleftrightarrow \mathsf{SliceSS}\left(D_{2^{n-2}\cdot m}^{-1}BP^{(\!(C_{2^{n-1}})\!)}\langle m\rangle\right)$

where $d_{2r-1} \iff d_r$.

►
$$D_{2^{n-1}\cdot m}^{-1} BP^{((C_{2^n}))}\langle m \rangle$$
 corresponds to $E_{2^{n-1}m}^{hC_{2^n}}$
► $D_{2^{n-2}\cdot m}^{-1} BP^{((C_{2^{n-1}}))}\langle m \rangle$ corresponds to $E_{2^{n-2}m}^{hC_{2^{n-1}}}$

Theorem (Meier–S.–Zeng)

There is a shearing isomorphism

SliceSS
$$(E_h^{hG}) \iff$$
 SliceSS $(E_{h/2}^{h(G/C_2)})$

where $d_{2r-1} \iff d_r$.

Theorem (Duan–Li–S.)

There is a horizontal vanishing line in SliceSS($E_h^{hC_{2^n}}$) and HFPSS($E_h^{hC_{2^n}}$) of filtration $2^{h+n} - 2^n + 1$, and all the differentials are of lengths $\leq 2^{h+n} - 2^n + 1$.

Theorem (Duan–Li–S.)

There is a horizontal vanishing line in SliceSS($E_h^{hC_{2^n}}$) and HFPSS($E_h^{hC_{2^n}}$) of filtration $2^{h+n} - 2^n + 1$, and all the differentials are of lengths $\leq 2^{h+n} - 2^n + 1$.

 It is a consequence of the nilpotence theorem (Devinatz–Hopkins–Smith) that there are such horizontal vanishing lines at *some* finite filtration

Theorem (Duan-Li-S.)

There is a horizontal vanishing line in SliceSS($E_h^{hC_{2^n}}$) and HFPSS($E_h^{hC_{2^n}}$) of filtration $2^{h+n} - 2^n + 1$, and all the differentials are of lengths $\leq 2^{h+n} - 2^n + 1$.

- It is a consequence of the nilpotence theorem (Devinatz–Hopkins–Smith) that there are such horizontal vanishing lines at *some* finite filtration
- Theoretically useful, but in practice can't use the existence result to prove any differentials

Theorem (Duan-Li-S.)

There is a horizontal vanishing line in SliceSS($E_h^{hC_{2^n}}$) and HFPSS($E_h^{hC_{2^n}}$) of filtration $2^{h+n} - 2^n + 1$, and all the differentials are of lengths $\leq 2^{h+n} - 2^n + 1$.

- It is a consequence of the nilpotence theorem (Devinatz–Hopkins–Smith) that there are such horizontal vanishing lines at *some* finite filtration
- Theoretically useful, but in practice can't use the existence result to prove any differentials
- Having this precise vanishing line is very useful for computations

The transchromatic isomorphism, combined with the vanishing line result, gives us another vanishing line!

- The transchromatic isomorphism, combined with the vanishing line result, gives us another vanishing line!
- E_h^{hG} has a horizontal vanishing line

- The transchromatic isomorphism, combined with the vanishing line result, gives us another vanishing line!
- E_h^{hG} has a horizontal vanishing line
- $E_{h/2}^{h(G/C_2)}$ also has a horizontal vanishing line

- The transchromatic isomorphism, combined with the vanishing line result, gives us another vanishing line!
- E_h^{hG} has a horizontal vanishing line
- $E_{h/2}^{h(G/C_2)}$ also has a horizontal vanishing line
- Apply the shearing isomorphism \implies vanishing lines of slope 1 for E_h^{hG}

- The transchromatic isomorphism, combined with the vanishing line result, gives us another vanishing line!
- E_h^{hG} has a horizontal vanishing line
- $E_{h/2}^{h(G/C_2)}$ also has a horizontal vanishing line
- Apply the shearing isomorphism \implies vanishing lines of slope 1 for E_h^{hG}
- Computationally, this imposes even more constraints on the possible differentials

Sheared vanishing lines

Periodicities for E_h^{hG}

- The theories E_h^{hG} are periodic

 - $E_1^{hC_2}$ is 8-periodic (real Bott periodicity) $E_2^{hC_{24}}$ is 192-periodic (K(2)-local TMF) $E_4^{hC_8}$ is 256-periodic (detection spectrum Ω for Kervaire invariant)

Periodicities for E_{h}^{hG}

- \blacktriangleright The theories E_{h}^{hG} are periodic

 - $E_1^{hC_2}$ is 8-periodic (real Bott periodicity) $E_2^{hC_{24}}$ is 192-periodic (K(2)-local TMF) $E_4^{hC_8}$ is 256-periodic (detection spectrum Ω for Kervaire invariant)
- Question: for any height h and finite group G, what is the periodicity of E_{h}^{hG} ?

Periodicity Theorem

Theorem (Duan-Hill-Li-Liu-S.-Wang-Xu)

For any $h \ge 1$ and G a finite subgroup of \mathbb{S}_h , E_h^{hG} is $P_{h,G}$ -periodic. Here, $P_{h,G} := \frac{|G|}{|H|} \cdot P_{h,H}$, where H is a 2-Sylow subgroup of G and

$$P_{h,H} := \begin{cases} 2 & \text{if } H = e \\ 2^{h+n+1} & \text{if } H = C_{2^n} \\ 2^{h+4} & \text{if } H = Q_8 \end{cases}$$

Periodicity Theorem

Theorem (Duan-Hill-Li-Liu-S.-Wang-Xu)

For any $h \ge 1$ and G a finite subgroup of \mathbb{S}_h , E_h^{hG} is $P_{h,G}$ -periodic. Here, $P_{h,G} := \frac{|G|}{|H|} \cdot P_{h,H}$, where H is a 2-Sylow subgroup of G and

$$P_{h,H} := \begin{cases} 2 & \text{if } H = e \\ 2^{h+n+1} & \text{if } H = C_{2^n} \\ 2^{h+4} & \text{if } H = Q_8 \end{cases}$$

This gives the periodicity for E_h^{hG} at all heights h and all groups G (at the prime 2)

Periodicity Theorem

Theorem (Duan-Hill-Li-Liu-S.-Wang-Xu)

For any $h \ge 1$ and G a finite subgroup of \mathbb{S}_h , E_h^{hG} is $P_{h,G}$ -periodic. Here, $P_{h,G} := \frac{|G|}{|H|} \cdot P_{h,H}$, where H is a 2-Sylow subgroup of G and

$$P_{h,H} := \begin{cases} 2 & \text{if } H = e \\ 2^{h+n+1} & \text{if } H = C_{2^n} \\ 2^{h+4} & \text{if } H = Q_8 \end{cases}$$

This gives the periodicity for E_h^{hG} at all heights h and all groups G (at the prime 2)

This has very nice computational consequences
Periodicity Theorem

Theorem (Duan-Hill-Li-Liu-S.-Wang-Xu)

For any $h \ge 1$ and G a finite subgroup of \mathbb{S}_h , E_h^{hG} is $P_{h,G}$ -periodic. Here, $P_{h,G} := \frac{|G|}{|H|} \cdot P_{h,H}$, where H is a 2-Sylow subgroup of G and

$$P_{h,H} := \begin{cases} 2 & \text{if } H = e \\ 2^{h+n+1} & \text{if } H = C_{2^n} \\ 2^{h+4} & \text{if } H = Q_8 \end{cases}$$

- This gives the periodicity for E_h^{hG} at all heights h and all groups G (at the prime 2)
- This has very nice computational consequences
- If we know the end result is periodic beforehand, then we can force differentials

This entire computation can be determined by transchromatic isomorphism, vanishing lines, and periodicities

A key idea in the proof is to treat E_h as a *G*-spectrum, and study the RO(G)-graded homotopy groups $\pi^G_{\star}E_h$

- A key idea in the proof is to treat E_h as a *G*-spectrum, and study the RO(G)-graded homotopy groups $\pi_*^G E_h$
- When considered as a G-spectrum, there are many RO(G)-graded periodicities for E_h

- A key idea in the proof is to treat E_h as a *G*-spectrum, and study the RO(G)-graded homotopy groups $\pi_*^G E_h$
- When considered as a G-spectrum, there are many RO(G)-graded periodicities for E_h
- Their linear combinations give the (integer-graded) periodicity for E_h^{hG}

- A key idea in the proof is to treat E_h as a *G*-spectrum, and study the RO(G)-graded homotopy groups $\pi_*^G E_h$
- When considered as a G-spectrum, there are many RO(G)-graded periodicities for E_h
- Their linear combinations give the (integer-graded) periodicity for *E_h^{hG}*

$$E_1^{hC_2}: 1 + \sigma, 4 - 4\sigma \\ \implies E_1^{hC_2} \text{ is 8-periodic}$$

- A key idea in the proof is to treat E_h as a G-spectrum, and study the RO(G)-graded homotopy groups π^G_{*}E_h
- When considered as a G-spectrum, there are many RO(G)-graded periodicities for E_h
- Their linear combinations give the (integer-graded) periodicity for *E_h^{hG}*

$$\begin{array}{l} \blacktriangleright \ E_1^{hC_2}: \ 1+\sigma, \ 4-4\sigma \\ \Longrightarrow \ E_1^{hC_2} \ \text{is 8-periodic} \end{array}$$

$$\begin{array}{l} \blacktriangleright \ E_2^{hC_4}: \ 1+\sigma+\lambda, \ 4-4\sigma, \ 16-8\lambda, \ 10-4\lambda-2\sigma \\ \Longrightarrow \ E_2^{hC_4} \ \text{is 32-periodic} \end{array}$$

Definition

Definition

 $\mathbb{L}_{h,G}$ = the free abelian subgroup of RO(G) (under addition) that is generated by all V such that E_h is V-periodic

▶ $\mathbb{L}_{h,G}$ encodes the complexity of $\pi^G_{\star} E_h$

Definition

- $\mathbb{L}_{h,G}$ encodes the complexity of $\pi^G_{\star}E_h$
- ► To completely understand $\pi^G_{\star}E_h$, we just need to understand the gradings in $RO(G)/\mathbb{L}_{h,G}$

Definition

- $\mathbb{L}_{h,G}$ encodes the complexity of $\pi^G_{\star}E_h$
- ► To completely understand $\pi^G_{\star}E_h$, we just need to understand the gradings in $RO(G)/\mathbb{L}_{h,G}$

► Example:
$$\mathbb{L}_{1,C_2} = \mathbb{Z}\langle \rho_2 \rangle \oplus \mathbb{Z}\langle 4-4\sigma \rangle$$

 $RO(C_2)/\mathbb{L}_{1,C_2} = \mathbb{Z}/8$ (complexity of $\pi_{\star}^{C_2}E_1$)

Definition

- $\mathbb{L}_{h,G}$ encodes the complexity of $\pi^G_{\star}E_h$
- ► To completely understand π^G_{*}E_h, we just need to understand the gradings in RO(G)/L_{h,G}
- ► Example: $\mathbb{L}_{1,C_2} = \mathbb{Z} \langle \rho_2 \rangle \oplus \mathbb{Z} \langle 4 4\sigma \rangle$ $RO(C_2)/\mathbb{L}_{1,C_2} = \mathbb{Z}/8$ (complexity of $\pi_{\star}^{C_2}E_1$)
- ► Example: $\mathbb{L}_{2,C_4} = \mathbb{Z}\langle \rho_4 \rangle \oplus \mathbb{Z}\langle 4 4\sigma \rangle \oplus \mathbb{Z}\langle 10 4\lambda 2\sigma \rangle$ $RO(C_4)/\mathbb{L}_{2,C_4} = \mathbb{Z}/32 \oplus \mathbb{Z}/2$ (complexity of $\pi_{\star}^{C_4}E_2$)

Definition

- $\mathbb{L}_{h,G}$ encodes the complexity of $\pi^G_{\star}E_h$
- ► To completely understand π^G_{*}E_h, we just need to understand the gradings in RO(G)/L_{h,G}
- ► Example: $\mathbb{L}_{1,C_2} = \mathbb{Z}\langle \rho_2 \rangle \oplus \mathbb{Z}\langle 4 4\sigma \rangle$ $RO(C_2)/\mathbb{L}_{1,C_2} = \mathbb{Z}/8$ (complexity of $\pi_{\star}^{C_2}E_1$)
- ► Example: $\mathbb{L}_{2,C_4} = \mathbb{Z}\langle \rho_4 \rangle \oplus \mathbb{Z}\langle 4 4\sigma \rangle \oplus \mathbb{Z}\langle 10 4\lambda 2\sigma \rangle$ $RO(C_4)/\mathbb{L}_{2,C_4} = \mathbb{Z}/32 \oplus \mathbb{Z}/2$ (complexity of $\pi_{\star}^{C_4}E_2$)
- This is very useful in the computation of K(h)-local Picard groups

▶ In general, it's hard to completely compute $\mathbb{L}_{h,G}$ for arbitrary h and G

- ▶ In general, it's hard to completely compute $\mathbb{L}_{h,G}$ for arbitrary h and G
- But we can analyze it inductively in two directions

- In general, it's hard to completely compute L_{h,G} for arbitrary h and G
- But we can analyze it inductively in two directions

• The Transchromatic Isomorphism Theorem shows that a part of $\mathbb{L}_{h,G}$ is from $\mathbb{L}_{h/2,G/C_2}$

- In general, it's hard to completely compute L_{h,G} for arbitrary h and G
- But we can analyze it inductively in two directions

- ► The Transchromatic Isomorphism Theorem shows that a part of L_{h,G} is from L_{h/2,G/C2}
- ▶ The norm functor shows that if $V \in \mathbb{L}_{h,H}$, then $\operatorname{Ind}_{H}^{G}(V) \in \mathbb{L}_{h,G}$

When h = 2ⁿ⁻¹m, the following are RO(C_{2ⁿ})-periodicities of E_h:

 1 + σ_{2ⁿ} + 2ⁿ⁻²λ_{n-1} + 2ⁿ⁻³λ_{n-2} + ··· + 2λ₂ + λ₁
 2^{m+1} - 2^{m+1}σ_{2ⁿ}
 2^{2ⁿ⁻ⁱm+n-i+1} - 2^{2ⁿ⁻ⁱm+n-i}λ_{n-i}, 1 ≤ i ≤ n - 1

2. When h = 4k + 2, the following are $RO(Q_8)$ -periodicities of E_h :

$$1 + \sigma_i + \sigma_j + \sigma_k + \mathbb{H} 2^{2k+2} + 2^{2k+2}\sigma_i - 2^{2k+2}\sigma_j - 2^{2k+2}\sigma 2^{h+2} + 2^{h+2}\sigma_i - 2^{h+1}\mathbb{H}.$$

When h = 2ⁿ⁻¹m, the following are RO(C_{2ⁿ})-periodicities of E_h:

 1 + σ_{2ⁿ} + 2ⁿ⁻²λ_{n-1} + 2ⁿ⁻³λ_{n-2} + ··· + 2λ₂ + λ₁
 2^{m+1} - 2^{m+1}σ_{2ⁿ}
 2^{2ⁿ⁻ⁱm+n-i+1} - 2^{2ⁿ⁻ⁱm+n-i}λ_{n-i}, 1 ≤ i ≤ n - 1

 When h = 4k + 2, the following are RO(Q₈)-periodicities of E_h:

$$1 + \sigma_i + \sigma_j + \sigma_k + \mathbb{H} 2^{2k+2} + 2^{2k+2}\sigma_i - 2^{2k+2}\sigma_j - 2^{2k+2}\sigma_k 2^{h+2} + 2^{h+2}\sigma_i - 2^{h+1}\mathbb{H}.$$

▶ $\mathbb{L}_{h,G}^{N}$ = lattice generated by the above periodicities

1. When $h = 2^{n-1}m$, the following are $RO(C_{2^n})$ -periodicities of E_h : $1 + \sigma_{2^n} + 2^{n-2}\lambda_{n-1} + 2^{n-3}\lambda_{n-2} + \dots + 2\lambda_2 + \lambda_1$ $2^{m+1} - 2^{m+1}\sigma_{2^n}$ $2^{2^{n-i}m+n-i+1} - 2^{2^{n-i}m+n-i}\lambda_{n-i}, 1 \le i \le n-1$

2. When h = 4k + 2, the following are $RO(Q_8)$ -periodicities of E_h :

$$1 + \sigma_i + \sigma_j + \sigma_k + \mathbb{H} 2^{2k+2} + 2^{2k+2}\sigma_i - 2^{2k+2}\sigma_j - 2^{2k+2}\sigma_i 2^{h+2} + 2^{h+2}\sigma_i - 2^{h+1}\mathbb{H}.$$

When h = 2ⁿ⁻¹m, the following are RO(C_{2ⁿ})-periodicities of E_h:

 1 + σ_{2ⁿ} + 2ⁿ⁻²λ_{n-1} + 2ⁿ⁻³λ_{n-2} + ··· + 2λ₂ + λ₁
 2^{m+1} - 2^{m+1}σ_{2ⁿ}
 2^{2ⁿ⁻ⁱm+n-i+1} - 2^{2ⁿ⁻ⁱm+n-i}λ_{n-i}, 1 ≤ i ≤ n - 1

2. When h = 4k + 2, the following are $RO(Q_8)$ -periodicities of E_h :

$$1 + \sigma_i + \sigma_j + \sigma_k + \mathbb{H} 2^{2k+2} + 2^{2k+2}\sigma_i - 2^{2k+2}\sigma_j - 2^{2k+2}\sigma 2^{h+2} + 2^{h+2}\sigma_i - 2^{h+1}\mathbb{H}.$$

Theorem (Duan–Hill–Li–Liu–S.–Wang–Xu)

1. When $h = 2^{n-1}m$, the following are $RO(C_{2^n})$ -periodicities of E_h : $1 + \sigma_{2^n} + 2^{n-2}\lambda_{n-1} + 2^{n-3}\lambda_{n-2} + \dots + 2\lambda_2 + \lambda_1$ $2^{m+1} - 2^{m+1}\sigma_{2^n}$ $2^{2^{n-i}m+n-i+1} - 2^{2^{n-i}m+n-i}\lambda_{n-i}, 1 \le i \le n-1$

2. When h = 4k + 2, the following are $RO(Q_8)$ -periodicities of E_h :

$$1 + \sigma_i + \sigma_j + \sigma_k + \mathbb{H} 2^{2k+2} + 2^{2k+2}\sigma_i - 2^{2k+2}\sigma_j - 2^{2k+2}\sigma 2^{h+2} + 2^{h+2}\sigma_i - 2^{h+1}\mathbb{H}.$$

L^N_{h,G} = lattice generated by the above periodicities
 L^N_{h,G} is a sublattice of L_{h,G} ⊂ RO(G)
 L^N_{h,G} is a pretty good approximation to L_{h,G}
 In fact, L^N_{h,G} is a full rank sublattice of RO(G)

Full rank sublattice

Theorem (Duan-Hill-Li-Liu-S.-Wang-Xu)

1. When
$$(h, G) = (2^{n-1}m, C_{2^n})$$
,

$$RO(G)/\mathbb{L}_{h,G}^{N} \cong \bigoplus_{i=1}^{n-1} \mathbb{Z}/2^{2^{n-i-1}m+n-i} \oplus \mathbb{Z}/2^{h+n+1}$$

2. When
$$(h, G) = (4k + 2, Q_8)$$
,
 $RO(G)/\mathbb{L}_{h,G}^N \cong \mathbb{Z}/2^{2k+2} \oplus \mathbb{Z}/2^{2k+3} \oplus \mathbb{Z}/2^{2k+3} \oplus \mathbb{Z}/2^{4k+6}$

Full rank sublattice

Theorem (Duan-Hill-Li-Liu-S.-Wang-Xu)
1. When
$$(h, G) = (2^{n-1}m, C_{2^n})$$
,
 $RO(G)/\mathbb{L}_{h,G}^N \cong \bigoplus_{i=1}^{n-1} \mathbb{Z}/2^{2^{n-i-1}m+n-i} \oplus \mathbb{Z}/2^{h+n+1}$
2. When $(h, G) = (4k + 2, Q_8)$,
 $RO(G)/\mathbb{L}_{h,G}^N \cong \mathbb{Z}/2^{2k+2} \oplus \mathbb{Z}/2^{2k+3} \oplus \mathbb{Z}/2^{2k+3} \oplus \mathbb{Z}/2^{4k+6}$

Corollary

The complexity of $\pi^{G}_{\star}E_{h}$ is finite, with a specific bound (given above).

Happy birthday Peter!

