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The generalized Poincaré conjecture

Poincaré conjecture
A simply connected closed 3-manifold is the standard 3-sphere.

Generalized Poincaré conjecture
topological case:
Are all homotopy spheres homeomorphic to the standard one?
smooth case:
Are all n-dimensional homotopy spheres diffeomorphic to the
standard one?
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Generalized Poincaré conjecture

dimension topological smooth
≤ 2 true true
3 true (Perelman) true (Moise + Perelman)
4 true (Freedman) unknown

≥ 5 true (Smale) depends on dimension

Wang Guozhen (SCMS) The last Kervaire invariant
IWoAT Special Conference in Honor of Prof. May

3 / 28



Milnor’s exotic 7-sphere

Milnor constructed a compact 8-manifold W with boundary as a disk
bundle over the 4-sphere, such that:

∂W is a homotopy sphere
W∪S7 D8 does not admit any smooth structure extending the smooth
structure on W:
Pontryagin class not integral using Hirzebruch’s signature formula.

Consequently, ∂W is not diffeomorphic to the standard sphere.
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Kervaire’s exotic 9-sphere

Kervaire constructed a compact 10-manifold M10 as follows:
1 Let U be the disk bundle associated with the tangent bundle of S5

2 Let V be an embedded D5 in S5

3 Let M′ be glued from two copies of U by identifying the two copies of
V × D5 under the isomorphism V × D5 ∼= D5 × V

4 M10 is obtained from M′ by smoothing corners
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Kervaire’s exotic 9-sphere

Kervaire defined an invariant and showed that:
∂M10 is a homotopy sphere
M10 ∪S9 D10 has Kervaire invariant 1
any smooth 10-manifold has Kervaire 0

Consequetly,
M10 ∪S9 D10 does not admit any smooth structure.
∂M10 is not diffeomorphic to the standard sphere
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Kervaire invariant

Let Ω = ΩS6, and M be a 4-connected closed 10-manifold.
H5(Ω) ∼= Ze1, H10(Ω) ∼= Ze2

for any x ∈ H5(M), there exits f : M → Ω such that f∗(e1) = x
define Φ(x) ∈ Z/2 to be the mod 2 reduction of f∗(e2)

Φ : H5(M,Z/2) → Z/2 is well-defined
Φ is quadratic: Φ(x + y) = Φ(x) + Φ(y) + x ∪ y
the Kervaire invariant of M is the Arf invariant of Φ (the majority of its value)

The construction can be generalized to any dimension 4k + 2.

Wang Guozhen (SCMS) The last Kervaire invariant
IWoAT Special Conference in Honor of Prof. May

7 / 28



Classification of the group Θn of homotopy spheres, n ≥ 5

(Kervaire-Milnor 1963)
if n ̸= 4k + 2, there is an exact sequence

0 → Θbp
n → Θn → πn/J → 0

if n = 4k + 2, there is an exact sequence

0 → Θbp
n → Θn → πn/J Φ−−→ Z/2 → Θbp

n−1 → 0

if n is even, Θbp
n = 0.

if n = 4k, Θbp
n−1 is cyclic of order 22k−2(22k−1 − 1)ck, with ck the numerator of 4B2k

k
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Questions after Kervaire-Milnor

How to compute the stable homotopy groups of spheres?
When is the Kervaire invariant trivial?
What is the story for n = 4?
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The Kervaire invariant one problem

Does there exists framed n-dimensional smooth closed manifolds with non-trivial
Kervaire invariant?

In dimensions 2, 6, 14, we can construct Kervaire invariant one framings on S1 × S1,
S3 × S3, S7 × S7 using trivializtions of the tangent bundles of S1, S3, S7 respectively.
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Kervaire invariant in the Adams spectral sequence

(Browder)
The Kervaire invariant is detected by h2

i in the Adams spectral sequnce.

The Kervaire invariant is trivial if n ̸= 2k − 2
The Kervaire invariant is detected by β2n,2n in the Adams-Novikov spectral
sequence.
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Construction of Kervaire classes

(Barratt, Jones, Mahowald, Tangora)
The Kervaire invariant is non-trivial in dimensions 30, 62

They constructed the Kervaire class by exibiting its factorization through certain finite
CW complexes.

S30 → X → S0

S62 → Y → S0
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Non-existence of Kervaire classes

(Hill-Hopkins-Ravenel)
The Kervaire invariant is trivial in dimension ≥ 254

They showed that β2n,2n cannot be a permanent cycle by comparing with the homotopy
fixed points spectral sequence and the slice spectral sequence of certain C8-equivariant
spectrum.

ANSS(S0) → HFSS(EC8
4 ) ⇒ π∗(EhC8

4 )

SliceSS(EC8
4 ) ⇒ π∗(EC8

4 ) → π∗(EhC8
4 )
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The existence of θ6

(Lin-Wang-Xu)
The Kervaire invariant in dimension 126 is non-trivial.

h2
6 is a permanent cycle in the Adans spectral sequence.

half of the framed cobordism classes in dimension 126 does not contain homotopy
spheres
any homotopy sphere of dimension 125 bounding a framed manifold is
diffeomorphic to the standard sphere

Remark: there exists exotic spheres in dimension 125 whose framed cobordism class is
non-trivial.

Wang Guozhen (SCMS) The last Kervaire invariant
IWoAT Special Conference in Honor of Prof. May

14 / 28



Method of computation

Adams spectral sequence:
start from homological algebra over the Steenrod algerba
generalized Adams spectral sequence:
Adams-Novikov spectral sequence, motivic Adams spectral sequence
deformation methods:
motivic deformation, synthetic deformation
Leibnitz rule:
produce new differentials using multiplicative structure
higher structures:
Toda brackets, power operation, secondary operations
Mahowald trick:
dichotomy between Adams differential and multiplicative structure
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Adams spectral sequence at p = 2 (Serre, Toda, May, Barratt,
Mahowald, Tangora, Isaksen, Wang, Xu, Lin, …)
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Applications in the smooth Poincaré conjecture

Smooth Poincaré conjecture
Are all n-dimensional homotopy spheres diffeomorphic to the standard one?

(Riemann-Roch, Moise) spheres of dimension 1,2,3 has unique smooth structure
(Kervaire-Milnor, Isaksen, Wang-Xu) the spheres in dimension 5, 6, 12, 56, 61 has
unique smooth structure
there exits exotic spheres in any other odd dimensions.
(Behrens-Hill-Hopkins-Mahowald) there exits exotic spheres in other even
dimensions from 5 to 138.
(Behrens-Hill-Hopkins-Mahowald) The only dimensions up to 200 which we do not
know if exotic spheres exist are 4, 140, 166, 176, 188
(Lin-Wang-Xu) there exits exotic spheres in dimensions 140, 166, 188.
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Main methods

Use synthetic notions to make precise statements of extensions.
Implement the generalized Leibnitz rule on a computer.
Construct a data base of Adams spectral sequences.
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Synthetic spectra

Pstrągowski constructed the category of synthetic spectra
symmetric monoidal stable ∞-category synSp
symmetric monoidal functor ν : Sp −→ synSp
λ ∈ π0,−1νS
π∗,∗ν(HF2) ∼= F2[λ]

π∗,∗(νX/λ) ∼= E∗,∗
2 (X)

λ-BocSS(νX) ∼= ASS(X)
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Synthetic extension

f : Σ0,jνX −→ νY
x ∈ Es,t

2 (X) survives to the Er-page
y ∈ Es+j+n,t+j+n

2 (Y) survives to the Er−n-page
fr : Σ0,jνX/λr−1 −→ νY/λr−1

We say that there is an f-extension on the Er page (with jump of filtration n), if there is
a synthetic f-extension

fr(x̃) = λnỹ
for any lift x̃ ∈ π∗,∗(νX), ỹ ∈ π∗,∗(νY) of x and y respectively. We denote it by

df,Er
n+j(x) = y
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Crossing extensions

8 WEINAN LIN, GUOZHEN WANG, AND ZHOULI XU
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Figure 3. An (f,Er)-extension when AF(f) = 0
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Figure 4. A crossing of an (f,Er)-extension when AF(f) = 0

From Figure 4 it is easy to describe a crossing of an (f,Er)-extension.

Definition 5.9. A crossing of the (f,Er)-extension (5.2) when AF(f) = 0 is an
(f,Er−a)-extension

df,Er−a
m (x′) = y′

where a > 0, x′ ∈ Es+a,t+a
2 (X) and a+m ≤ n.

Theorem 5.10. Consider a cofiber sequence

X
f−→ Y

g−→ Z
h−→ ΣX.

such that

0→ H∗Z
g∗−→ H∗Y

f∗−→ H∗X → 0.

is a short exact sequence. Suppose that n, l ≥ 1, m ≥ 0, r = n+m+ l ≥ 2,

x ∈ Es,t
2 (X), y ∈ Es+n,y+n

2 (Y )

x̄ ∈ Es−l,t−l+1
2 (Z), ȳ ∈ Es−l+r,t−l+r

2 (Z),
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Generalized Leibniz rule

1 f : X −→ Y
2 dr(x) = x∞
3 df,Er

n (x) = y for some n ≤ r − 2
4 df,E∞

a (x∞) = y∞ for some a
If either (2) or (3) has no crossing on the Er-page, and (4) has no crossing on the
E∞-page, then y supports an Adams differential to y∞
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Genaralized Mahowald trick

1 cofiber sequence X f−→ Y g−→ Z h−→ ΣX
2 x ∈ Es,t

2 (X), y ∈ Es+n,y+n
2 (Y)

3 x̄ ∈ Es−l,t−l+1
2 (Z) such that dh,Er−m

l x̄ = Σx
4 dg,Em+2

m y = ȳ ∈ Es−l+r,t−l+r
2 (Z)

5 drx̄ = ȳ
If either (3) or (5) has no crossing, then

df,En+m+2
n x = y

modulo the image of d2, . . . , dr−m in the Adams spectral sequence of Y.
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Generalized Mahowald trickON THE LAST KERVAIRE INVARIANT PROBLEM 9
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Figure 5. A demonstration of Theorem 5.10

and

(1) d
h,Er−m

l x̄ = Σx,
(2) drx̄ = ȳ,
(3) either (1) has no crossing or (2) has no crossing on the Er−m page.

(4) d
g,Em+2
m y = ȳ.

Then we have d
f,En+m+2
n x = y modulo the image of d2, . . . , dr−m in the Adams

spectral sequence of Y .

Proof. Consider the smash products of the two cofiber sequences of synthetic spec-
tra

νX
f−→ νY

g−→ νZ
h̃−→ Σ1,0νX

and

S0,0/λr ρ−→ S0,0/λr−m−1 δ−→ S1,−(r−m−1)/λm+1 λr−m−1

−−−−−→ S1,0/λr.

We fix a choice of lifts of x, y, x̄, ȳ in the synthetic Adams spectral sequences with
the same notation. Now we consider synthetic elements

x ∈ Es,t,t
∞ (νX) y ∈ Es+n,t+n,t+n

∞ (νY ),
x̄ ∈ Es−l,t−l+1,t−l+1

∞ (νZ) ȳ ∈ Es−l+r,t−l+r,t−l+r
∞ (νZ).

If (1) has no crossing and (2) has potential crossings on the Er−m page, we pick
[x̄] ∈ {x̄} ⊂ πt−s,t(νZ/λ

r−m−1) such that

(5.11) −δ[x̄] ∈ {λmΣ1,−(r−m−1)ȳ} ⊂ πt−s,t(Σ
1,−(r−m−1)νZ/λm+1).

If (2) has no crossing on the Er−m page and (1) has potential crossings, we pick
[x̄] ∈ {x̄} ⊂ πt−s,t(νZ/λ

r−m−1) such that

(5.12) h[x̄] ∈ {λl−1Σ1,0x} ⊂ πt−s,t(Σ
1,0νX/λr).

In either case we are able to make sure that both (5.11) and (5.12) happen.
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Implementation of computational techniques

Grobner basis algorithm

Adams SS database

naturality Leibnitz rule

CW complex map
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The database of Adams spectral sequence
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Thanks!
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