The last Kervaire invariant

Wang Guozhen Joint work with Lin Weinan and Xu Zhouli

IWoAT Special Conference in Honor of Prof. May

Wang Guozhen (SCMS)

The last Kervaire invariant

The generalized Poincaré conjecture

Poincaré conjecture

A simply connected closed 3-manifold is the standard 3-sphere.

Generalized Poincaré conjecture

- topological case:
 - Are all homotopy spheres homeomorphic to the standard one?

• smooth case:

Are all *n*-dimensional homotopy spheres diffeomorphic to the standard one?

Wang Guozhen	(SCMS)
--------------	--------

Generalized Poincaré conjecture

dimension	topological	smooth	
≤ 2	true	true	
3	true (Perelman)	true (Moise + Perelman)	
4	true (Freedman)	unknown	
≥ 5	true (Smale)	depends on dimension	

Milnor constructed a compact 8-manifold W with boundary as a disk bundle over the 4-sphere, such that:

- ∂W is a homotopy sphere
- $W \cup_{S^7} D^8$ does not admit any smooth structure extending the smooth structure on W:

Pontryagin class not integral using Hirzebruch's signature formula.

Consequently, ∂W is not diffeomorphic to the standard sphere.

Kervaire constructed a compact 10-manifold M^{10} as follows:

- Let U be the disk bundle associated with the tangent bundle of S^5
- Let V be an embedded D^5 in S^5
- Let M' be glued from two copies of U by identifying the two copies of $V \times D^5$ under the isomorphism $V \times D^5 \cong D^5 \times V$
- M^{10} is obtained from M' by smoothing corners

Kervaire defined an invariant and showed that:

- ∂M^{10} is a homotopy sphere
- $M^{10} \cup_{S^9} D^{10}$ has Kervaire invariant 1
- any smooth 10-manifold has Kervaire 0

Consequetly,

- $M^{10} \cup_{S^9} D^{10}$ does not admit any smooth structure.
- ∂M^{10} is not diffeomorphic to the standard sphere

Let $\Omega = \Omega S^6$, and *M* be a 4-connected closed 10-manifold.

- $H^{5}(\Omega)\cong\mathbb{Z}e_{1},\ H^{10}(\Omega)\cong\mathbb{Z}e_{2}$
- for any $x \in H^5(M)$, there exits $f \colon M o \Omega$ such that $f^*(e_1) = x$
- define $\Phi(x) \in \mathbb{Z}/2$ to be the mod 2 reduction of $f^*(e_2)$
- $\Phi: H^{5}(M, \mathbb{Z}/2) \to \mathbb{Z}/2$ is well-defined
- Φ is quadratic: $\Phi(x + y) = \Phi(x) + \Phi(y) + x \cup y$
- the Kervaire invariant of M is the Arf invariant of Φ (the majority of its value)

The construction can be generalized to any dimension 4k + 2.

Classification of the group Θ_n of homotopy spheres, $n \geq 5$

(Kervaire-Milnor 1963)

• if $n \neq 4k + 2$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \to 0$$

• if n = 4k + 2, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \xrightarrow{\Phi} \mathbb{Z}/2 \to \Theta_{n-1}^{bp} \to 0$$

if *n* is even, Θ^{bp}_n = 0.
 if n = 4k, Θ^{bp}_{n-1} is cyclic of order 2^{2k-2}(2^{2k-1} − 1)c_k, with c_k the numerator of 4B_{2k}/k

Wang Guozhen (SCMS)

- How to compute the stable homotopy groups of spheres?
- When is the Kervaire invariant trivial?
- What is the story for n = 4?

The Kervaire invariant one problem

Does there exists framed *n*-dimensional smooth closed manifolds with non-trivial Kervaire invariant?

Wang Guozhen (SCMS)

The last Kervaire invariant

10/28

Does there exists framed *n*-dimensional smooth closed manifolds with non-trivial Kervaire invariant?

In dimensions 2, 6, 14, we can construct Kervaire invariant one framings on $S^1 \times S^1$, $S^3 \times S^3$, $S^7 \times S^7$ using trivializations of the tangent bundles of S^1 , S^3 , S^7 respectively.

Kervaire invariant in the Adams spectral sequence

(Browder)

The Kervaire invariant is detected by h_i^2 in the Adams spectral sequnce.

- The Kervaire invariant is trivial if $n \neq 2^k 2$
- The Kervaire invariant is detected by β_{2ⁿ,2ⁿ} in the Adams-Novikov spectral sequence.

(Barratt, Jones, Mahowald, Tangora)

The Kervaire invariant is non-trivial in dimensions 30, 62

Wang Guozhen (SCMS)

The last Kervaire invariant

12 / 28

(Barratt, Jones, Mahowald, Tangora)

The Kervaire invariant is non-trivial in dimensions 30, 62

They constructed the Kervaire class by exibiting its factorization through certain finite CW complexes.

$$S^{30} o X o S^0$$

 $S^{62} o Y o S^0$

Non-existence of Kervaire classes

(Hill-Hopkins-Ravenel)

The Kervaire invariant is trivial in dimension ≥ 254

VVang	Guozhen	

13/28

(Hill-Hopkins-Ravenel)

The Kervaire invariant is trivial in dimension ≥ 254

They showed that $\beta_{2^n,2^n}$ cannot be a permanent cycle by comparing with the homotopy fixed points spectral sequence and the slice spectral sequence of certain C_8 -equivariant spectrum.

$$ANSS(S^{0}) \rightarrow HFSS(E_{4}^{C_{8}}) \Rightarrow \pi_{*}(E_{4}^{hC_{8}})$$
$$SliceSS(E_{4}^{C_{8}}) \Rightarrow \pi_{*}(E_{4}^{C_{8}}) \rightarrow \pi_{*}(E_{4}^{hC_{8}})$$

Wang Guozhen (SCMS)

The last Kervaire invariant

13/28

(Lin-Wang-Xu)

The Kervaire invariant in dimension 126 is non-trivial.

- h_6^2 is a permanent cycle in the Adans spectral sequence.
- half of the framed cobordism classes in dimension 126 does not contain homotopy spheres
- any homotopy sphere of dimension 125 bounding a framed manifold is diffeomorphic to the standard sphere

Remark: there exists exotic spheres in dimension 125 whose framed cobordism class is non-trivial.

Method of computation

Adams spectral sequence:

start from homological algebra over the Steenrod algerba

- generalized Adams spectral sequence: Adams-Novikov spectral sequence, motivic Adams spectral sequence
- deformation methods: motivic deformation, synthetic deformation
- Leibnitz rule:

produce new differentials using multiplicative structure

• higher structures:

Toda brackets, power operation, secondary operations

• Mahowald trick:

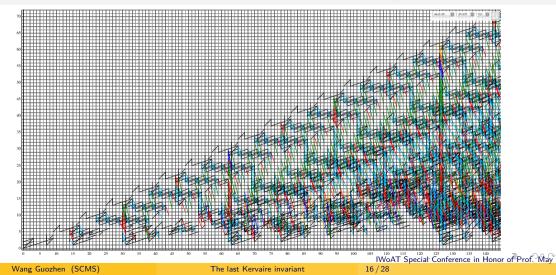
dichotomy between Adams differential and multiplicative structure

Wang Guozhen (SCMS)

IWoAT Special Conference in Honor of Prof. May

15/28

Adams spectral sequence at p = 2 (Serre, Toda, May, Barratt, Mahowald, Tangora, Isaksen, Wang, Xu, Lin, ...)



Applications in the smooth Poincaré conjecture

Smooth Poincaré conjecture

Are all *n*-dimensional homotopy spheres diffeomorphic to the standard one?

- (Riemann-Roch, Moise) spheres of dimension 1,2,3 has unique smooth structure
- (Kervaire-Milnor, Isaksen, Wang-Xu) the spheres in dimension 5, 6, 12, 56, 61 has unique smooth structure
- there exits exotic spheres in any other odd dimensions.
- (Behrens-Hill-Hopkins-Mahowald) there exits exotic spheres in other even dimensions from 5 to 138.
- (Behrens-Hill-Hopkins-Mahowald) The only dimensions up to 200 which we do not know if exotic spheres exist are 4, 140, 166, 176, 188
- (Lin-Wang-Xu) there exits exotic spheres in dimensions 140, 166, 188.

- Use synthetic notions to make precise statements of extensions.
- Implement the generalized Leibnitz rule on a computer.
- Construct a data base of Adams spectral sequences.

Pstrągowski constructed the category of synthetic spectra

- symmetric monoidal stable ∞ -category synSp
- symmetric monoidal functor $\nu: Sp \rightarrow synSp$
- $\lambda \in \pi_{0,-1}\nu\mathbb{S}$
- $\pi_{*,*}\nu(H\mathbb{F}_2) \cong \mathbb{F}_2[\lambda]$
- $\pi_{*,*}(\nu X/\lambda) \cong E_2^{*,*}(X)$
- λ -BocSS(νX) \cong ASS(X)

IWoAT Special Conference in Honor of Prof. May

19/28

Synthetic extension

- $f: \Sigma^{0,j} \nu X \to \nu Y$
- $x \in E_2^{s,t}(X)$ survives to the E_r -page
- $y \in E_2^{s+j+n,t+j+n}(Y)$ survives to the E_{r-n} -page
- $f_r: \Sigma^{0,j} \nu X / \lambda^{r-1} \rightarrow \nu Y / \lambda^{r-1}$

We say that there is an *f*-extension on the E_r page (with jump of filtration *n*), if there is a synthetic *f*-extension

$$f_r(\tilde{x}) = \lambda^n \tilde{y}$$

for any lift $\tilde{x} \in \pi_{*,*}(\nu X)$, $\tilde{y} \in \pi_{*,*}(\nu Y)$ of x and y respectively. We denote it by

$$d_{n+j}^{f,E_r}(x) = y$$

Wang Guozhen (SCMS)

Crossing extensions

```
-
                                                                                                                   \.J./
        s + r
                                                                                              s + r
                                             d_{\ge r-a-m}
                                                                                                                                                 \lambda^n y
                                                                     y
       s+n
                              d_{>r-a}
                                                                                              s+n
                      d_{>r}
                                                                                                                                                \lambda^{a+m}
                                                                                      s + a + m
s + a + m
                                                                   \bullet y'
                                     d_m^{f,E_{r-a}}
                                                                                                                   d_m^{f_{r-a}}
        s + a
                                                                                              s + a
                                                                                                           \lambda^a x'
                                    x
                                            d_n^{f,E_r}
                                                                                                                        d_n^{\tilde{f}_r}
                                                                                                     s
               s
                                                                                     E^{*,t-s+*,t}_{\infty}(\nu X/\lambda^{r-1}) E^{*,t-s+*,t}_{\infty}(\nu Y/\lambda^{r-1})
                        E_2(X)
                                                         E_2(Y)
```

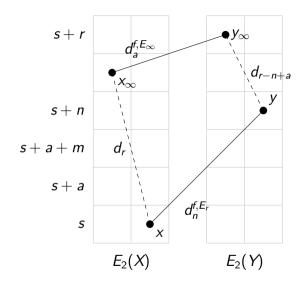
FIGURE 4. A crossing of an (f, E_r) -extension when AF(f) = 0

Wang Guozhen (SCMS)

21/28

- $I : X \to Y$
- $d_r(x) = x_\infty$
- $d_n^{f,E_r}(x) = y$ for some $n \le r-2$
- $d_a^{f,E_\infty}(x_\infty) = y_\infty$ for some a

If either (2) or (3) has no crossing on the E_r -page, and (4) has no crossing on the E_{∞} -page, then y supports an Adams differential to y_{∞}



		IWoAT Special Conference in Honor of Prof. May
Wang Guozhen (SCMS)	The last Kervaire invariant	23/28

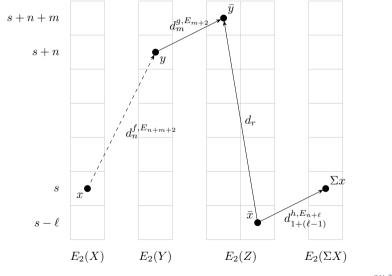
Genaralized Mahowald trick

1 cofiber sequence
$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$$
2 $x \in E_2^{s,t}(X), y \in E_2^{s+n,y+n}(Y)$
3 $\bar{x} \in E_2^{s-l,t-l+1}(Z)$ such that $d_l^{h,E_{r-m}}\bar{x} = \Sigma x$
3 $d_m^{g,E_{m+2}}y = \bar{y} \in E_2^{s-l+r,t-l+r}(Z)$
3 $d_r\bar{x} = \bar{y}$
If either (3) or (5) has no crossing, then

$$d_n^{f,E_{n+m+2}}x=y$$

modulo the image of d_2, \ldots, d_{r-m} in the Adams spectral sequence of Y.

Generalized Mahowald trick

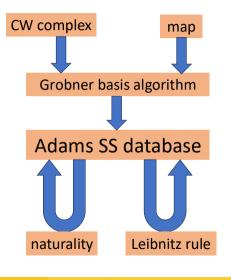


Wang Guozhen (SCMS)

The last Kervaire invariant

25 / 28

Implementation of computational techniques



Wang Guozhen (SCMS)
----------------	-------

The database of Adams spectral sequence

Wang Guozhen (SCMS)

The last Kervaire invariant

Thanks!

Wang	Guoz	nen	SCIV	15)

28 / 28