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Theorem (Lin-Wang—Xu)

h2 survives to the E,-page in the Adams spectral sequence.
By Browder's theorem

Corollary

There exist framed manifolds with Kervaire invariant 1 in dimension 126.

Together with theorems of Browder 1969, Mahowald—Tangora 1967,
Barratt—Jones—Mahowald 1984, and Hill-Hopkins—Ravenel 2016

Corollary
Framed manifolds with Kervaire invariant one exist in and only in
dimensions 2, 6, 14, 30, 62, 126.

» dim 30, explicit manifold known by J.Jones 1978

» dim 62 and 126, no explicit manifold known
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» Lin's program
> noncommutative Grobner bases for Steenrod algebra

> secondary Steenrod algebra
> propagation of differentials and extensions

» Techniques from HF,-synthetic/filtered spectra

> Generalized Leibniz Rule
> Generalized Mahowald Trick

» Adhoc arguments near stem 126

> Barratt—Jones—Mahowald’s inductive approach

> upgraded by Burklund—Xu in the context of
HF,-synthetic/filtered spectra:

> 0 exists < A2 =0
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» (Voevodsky): W*V*HF?Ot = F,[7], || = (0,-1)

» Betti realization: SH(C) ——— SH
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TH—mm1

» (Dugger—Isaksen, Hu—Kriz—Ormsby):
motivic Adams and Adams—Novikov spectral sequence
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» 7-bockstein spectral sequence

mot ANSS r ANSS
E ~ ANSS EQ[T]

d2r+1X = Try < > d2r+1X =Yy

> @/T: the cofiber of T

> mot ANSS(@/T) collapses at E;

7,2 500/7 = Extiy 5p(BPy, BP,)

» (Dugger—Isaksen, Gheorghe-Wang—Xu):

SH) <7~ §00.Mod — ™" . D(BP,BP-Comod)

generic fiber special fiber
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» The synthetic Adams spectral sequence is Rigid!

» A\-bockstein spectral sequence

syn ASS A ASS
E2 >~ ASS E2[>\:|

dyix=Ny<—>d1x=y

v

S5%0/)\: the cofiber of A
syn ASS(S%9/)) collapses at E;

v

T £ SOO/N = Exty* (Fp, Fp)

v

ﬂ*,*SO’O/A” <~——— Adams E,;1-page
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» Classical S°: d>(hs) = hoh3, d3(hohs) = hodo
» 500, da(hs) = Ahoh3, d3(hohs) = A?hodo
> survive: hohg, hody, Ahodp
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> everything survives!
> §0.0/)\2: da(hy) = Ahoh3, d3(hohs) = AN2hgdy = 0
dr(Ahg) = N2hoh3 =0
> survive: h0h§, hody, Ahody
Ahy

> g SO0/A" <> Adams E,;1-page
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> SO,—n A" 50,0 50’0/)\" 9n 51’_"
total Adams diff

»n=1 EXt;’tL =~ 7Tt757t50’0/>\

i

1,1
> hy € EXtA’ 6 = 7'1'15715_»,_150’0//\

hs doesn’t lift to S%°

v

> d2(h4) = )\hgh% <~ 51(/’74) = hoh%

v

d3(h0h4) = )\2h0d0 <> 51(/70/74) = )\hodo

> = [hoh%] . [ho] = [)\hodo] in 7714’14+450’0

> Warning: in m14,14:145%°, the element hoh? detects two homotopy
classes, differed by A\[dp]!
= for the other choice of [hgh3],  [hoh3] - [ho] = O.

» Define extensions on an Adams E,-page,
Translate differentials to extensions

» Generalized Leibniz Rule, Generalized Mahowald Trick
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» For x € Ext, permanent cycle, we denote by
> {x}: the set of all classes in 7 that are detected by x.
> [x]: a specific or a general class in {x},
depending on the context.

v

05 = [h2]: any synthetic homotopy class in 762,62125%C detected by
h2 in the Adams E,-page.

v

Denote also by 5 its image in 76621250 /A" via the map
5§00 — SO0/Xr for all r > 1.

v

n= [hl] € 7T171+150"0.

v

Fact: 2-05 =0 in 7r62762+250’0 for every 0s.

0,63 , . )
> Exty =0 = 7r62762+250’0 doesn't contain any A-torsion.

> Xu, Isaksen—-Wang—Xu: 2 - 05 = 0 in w2 S° for every 6s.
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Inductive Approach for g

Theorem (Barratt—Jones—Mahowald, Burklund—Xu)

1. The element hZ survives to the E, 3-page of the classical Adams
spectral sequence if and only if for some 0s,

)\770% =0in 71'125,125_;,_450’0/)\,4—1.

2. In particular, h? is a permanent cycle in the classical Adams spectral
sequence if and only if for some 05,

2 - 0,0
Ands =0 in T125125145.

> In fact, the expression Anf2 is consistent for every choice of 0s.
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> Take any 05 € me2,60125%0, and its extension f : $62:64/2 — 500,
where 592942 is the cofiber of 2 : §62:04 —, 562,64,

> Consider its quadratic construction Sq(f) : (§°%%4/2)52 — S%0.

A2

Sq(f)
—_—

562,64/2 f 50,0 (562,64/2)[/7\(-22 S0,0



Ideas of the Proof




Ideas of the Proof

f A
562,64 /> 50,0 (562764/2)“%

N 500/) g1 gl-1



Ideas of the Proof

562,64/ f . 500 (55264 /212 Sq(f) 500
N 500/) g1 gl-1

h2 ——— o2

> If 762 is detected by A"~° T, for some T, € Exty ",



Ideas of the Proof

562,64/ f . 500 (55264 /212 Sq(f) 500
N 500/) g1 gl-1

h2 ——— o2

> If 62 is detected by \"~5T, for some T, € Ext2’125+",

then there is a synthetic Adams differential d,_2(hZ) = A" 73T,



Strategy for proving hZ as a permanent cycle

> If n62 is detected by A"~3T, for some T, € Ext2’125+",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.



Strategy for proving hZ as a permanent cycle

> If n62 is detected by A"~3T, for some T, € Ext2’125+",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.

» Goal: Show that Anf2 = 0 by Adams filtration (AF) estimation.



Strategy for proving hZ as a permanent cycle

> If n62 is detected by A"~3T, for some T, € Ext2’125+",
then there is a synthetic Adams differential d,_2(h2) = A\"3T,.
» Goal: Show that Anf2 = 0 by Adams filtration (AF) estimation.

» Start with (9% € 7T124y124+450’0.



Strategy for proving hZ as a permanent cycle

> If n62 is detected by A"~3T, for some T, € Ext2’125+",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.
» Goal: Show that Anf2 = 0 by Adams filtration (AF) estimation.
> Start with 02 € 7124,124:+45%°.
» Exti®t = 0fori<?2



Strategy for proving hZ as a permanent cycle

> If n62 is detected by \"~5 T, for some T, € Ext2’125+",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.
> Goal: Show that An#2 = 0 by Adams filtration (AF) estimation.

» Start with (9% € 7T124y124+450’0.

12547 .
> Ext, T =0fori<?
> = T124.124145%0 doesn't contain A-torision.



Strategy for proving hZ as a permanent cycle

If 62 is detected by \"~5T,, for some T, € Ext2’125+",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.

v

> Goal: Show that An#2 = 0 by Adams filtration (AF) estimation.

» Start with (9% € 7T124y124+450’0.

» Exti®t =0 fori<?2

> = T124.124145%0 doesn't contain A-torision.

> By inspection, AF(62) > 10.



Strategy for proving hZ as a permanent cycle

If 762 is detected by A""5T, for some T, € Exty'>*"",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.

v

> Goal: Show that An#2 = 0 by Adams filtration (AF) estimation.

> Start with 02 € T124.124:45%°.

» Exti®t =0 fori<?2

> = T124.124145%0 doesn't contain A-torision.
> By inspection, AF(62) > 10.

> If AF(62) = 10, then 62 is detected by A°h3x124 5.



Strategy for proving hZ as a permanent cycle

If 762 is detected by A""5T, for some T, € Exty'>*"",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.

v

> Goal: Show that An#2 = 0 by Adams filtration (AF) estimation.
> Start with 02 € T124.124:45%°.

» Exti®t =0 fori<?2

> = T124.124145%0 doesn't contain A-torision.
> By inspection, AF(62) > 10.

> If AF(62) = 10, then 62 is detected by A°h3xi24 5.

> Next estimate nf2.



Strategy for proving hZ as a permanent cycle

If 762 is detected by A""5T, for some T, € Exty'>*"",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.

v

> Goal: Show that An#2 = 0 by Adams filtration (AF) estimation.
> Start with 02 € T124.124:45%°.
» Exti®t =0 fori<?2
> = T124.124145%0 doesn't contain A-torision.
> By inspection, AF(62) > 10.
> If AF(62) = 10, then 62 is detected by A°h3xi24 5.
> Next estimate nf2.

> AF(/\377[/7(2;X124,8]) > 14.



Strategy for proving hZ as a permanent cycle

If 762 is detected by A""5T, for some T, € Exty'>*"",

then there is a synthetic Adams differential d,_2(h2) = A\"3T,.

v

> Goal: Show that An#2 = 0 by Adams filtration (AF) estimation.

» Start with (9% € 7T124y124+450’0.
1,125+

> Ext, =0fori<2

> = T124.124145%0 doesn't contain A-torision.
> By inspection, AF(62) > 10.

> If AF(62) = 10, then 62 is detected by A°h3x124 5.
> Next estimate nf2.

> AF(N31[hgx1248]) = 14.
> |f AF()\377[/1(2)X12473]) = 14, then it is detected by )\6h1h4X1()g’12.



Strategy for proving hZ as a permanent cycle

n, 125+n

v

If 762 is detected by A" > T, for some T, € Ext)y
then there is a synthetic Adams differential d,_ 2(h2) = \"3T,.

> Goal: Show that An#2 = 0 by Adams filtration (AF) estimation.

» Start with (92 € 7T124)124+450’0

1125 .
> Ext’ = 0fori<?
> = 77124,124+450’° doesn't contain A-torision.

> By inspection, AF(62) > 10.
> If AF(62) = 10, then 62 is detected by A°h3x124 5.
> Next estimate nf2.

> AF(/\37][th124,3]) 14.
> |f AF()\377[/7(2)X124 g]) = 14, then it is detected by )\6h1h4X1()g’12.
> If AF(A3n[h3x124.8]) > 14, then it is zero.
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Proposition A
Exactly one of (1) and (2) is true:
1) hZ survives to the E,-page.
2) dia(h3) = h1hsxie,12 # 0.
2) is true < (3),(4),(5) are all true:

4) 602 = X°[h3x124,8] # O € 12412444 5.

(

(2)

(2)

(3) ds(x126,84 + x126.8) = 0.
(4)

()

3 2 6 0,0
Nn[hgx12a,8] = N°[h1haxi00,12] € T125,125485°°.

» Choice of 05 in (4) doesn't matter,

> Choice of [h3x1248] in (5) doesn't matter.

Proposition B
If (3) is true, then (5) is not true.
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For the sake of contradiction, we assume (3) and (5) are both true.

Lemma 1

There exists oy = [X123’9 + h0X123,g] € 7T123’123+950’0/>\9,

0,0 /19 0,0 /19
Q3 € 1241244135 " /A”, 03 € T125,1254+155 " /A7,

such that
L Xn-ar = N[hgxia 8] + A € m124,124475%% /A7,
n-az=\-az € T125,1251145°0/2%,
2. X3y [ho] =0 € M123,123475%0/A°.
Lemma 2

The synthetic Toda bracket

(Nag, [ho],n) € m125,125475%0/\°

does not contain zero, and is detected by \* hgx12579,2.
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Lemma 3 (Corollary of Lemma 2)

[A*h3x125.9.2] - [ho] = AO[h1hax100,12] # O € T125,105+85%0/A°.

Lemma 4
[Mhixio1,7] - [h2] = A[N5Hgx125,0,2] € T125,125155%0/A°.
Sketch Proof of Proposition B:

> [)\4h1X121)7] . [hQ] . [ho] = )\[)\5/7(%)(12579,2] : [ho]
= A8[h1hyx100.12] #0 € 12512546570/ \°.

> [)\4h1X121,7] . [ho] #0e€e 71'1227122_»,_550’0/)\9, only possibilities:
Me[hgMdo] in AF = 11,  A'[hsxe111] in AF = 12.
Both lift to my S0,

> In both cases, A*[h1haxi00,12] is @ A[h2]-multiple in g 4 S0,

> = in ASS(S°/v), h1hsx100.12[0] must be killed by d, for r < 5.
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» Xy [ho] € 77123,123“50’0/)\11 has AF > 17 by inspection.
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[Mhixi21.7] - [ha] = M[A5h2x125.0.2] € 12512515 5%0/A°.

» Fact: hixio1,7 survives to Eg, not killed by any differential.
= [Mhixo1,7] # 0 € M122,12014S%0 /N,

$3 Y g0 ’ SOy g S v ol
o B (S0) e Ext®*(S0/1) T Ext(S%) e
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hyx125,0,2 ——— hoX125 9,2([0]

/71X121 7(4]
+x126,8[0] ———> h1x1217

+Xx126,8,2[0]

» Generalized Mahowald Trick:
[hix121.7] - [h2] = N[ h3x125.0.2] € 12512549500/ A3.

> Lift via S%0/\% — S00/)3 push via \* : £0=450.0/)5 , 50.0/)9
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> In the Adams spectral sequence,
Exti’*(Fg,Fz) is generated by the classes h;.

> (Adams): hj survives < j < 3.
» The tangent bundle over S” is trivial & n=1,3,7.
» (Hill-Hopkins—Ravenel, Lin-Wang—Xu): hf survives < j < 6.

» There exists a framed n-dim manifold with Kervaire invariant one
< n=2 6, 14, 30, 62,126.

» Question: Explicit differentials on hf for j =77
> (Burklund-Xu): h? survives < j < 4.
» Ongoing progress: interpretation in terms of framed manifolds.

> hj‘-1 = 0. Question: What's next?
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in Ext, Sq° : Ext‘;’t — Ext‘;’2t,

v

Sq°hj = hjr1, Sq°H; = W7y, Sq°h} = k2.,

v

Sq°-family: x, Sq°x, Sq°(Sq°x), ---

» New Doomsday Conjecture: For any nonzero Sq°-family, only
finitely many classes survive.
» Exty* < Hopf invariant problem,
> Exti”’<

> Ext3A’*: other than hj‘?’, many cases remain

< Kervaire invariant problem,

W hj kg1 + hpahi = (2, ho, h7e).

v

Uniform Doomsday Conjecture: For any nonzero Sq°-family {a;},
there exists a Sq°-family {bj}, r =2, ceExt, such that

d.(aj) = c-bj #0, for j >>0.



Thank you!



