1 Equivariant Thom-Pontryagin construction

Goal: Explain the following diagram of equivariant homology theories:

\[
\begin{array}{ccc}
\mathcal{N}^G_* & \xrightarrow{\Theta^G} & \text{mO}^G_* \\
\downarrow & & \downarrow \\
\mathcal{N}^{G:S}_* & \xrightarrow{\Theta^G} & \text{MO}^G_*
\end{array}
\Rightarrow
\begin{array}{ccc}
\mathcal{N}^G_* & \xrightarrow{\Theta^G} & \text{mOP}^G_* \\
\downarrow & & \downarrow \\
\mathcal{N}^{G:S}_* & \xrightarrow{\Theta^G} & \text{MOP}^G_*
\end{array}
\]

In this diagram:

1. \text{MO} is the ultra-commutative Thom spectrum, \text{mO} is an \(E_8\)-Thom spectrum. \text{MOP} and \text{mOP} are periodic extensions of \text{MO} and \text{mO}, respectively.

2. The vertical transformation in the middle column is an isomorphism for \(G = e\). This is not true in general.

3. \(\mathcal{N}^G_*\) is a geometrically defined equivariant bordism and \(\mathcal{N}^{G:S}_*\) is a stable equivariant bordism. They are not represented by orthogonal spectra, but defined from bordism classes of \(G\)-manifolds.

4. The two \(\Theta^G\) maps are equivariant Thom-Pontryagin construction and its stabilization". The upper \(\Theta^G\) is an isomorphism when \(G\) is a product of finite groups and a torus.

1.1 Global Thom spectra

We first define the global Thom spectra: \(\text{MGr}, \text{MOP}, \text{MO}, \text{mOP}\) and \(\text{mO}\).

Example 1.1. We start with \(\text{MGr}\), the Thom spectrum over the additive Grassmannian \(\text{Gr}\). The value of \(\text{Gr}\) at each inner product space \(V\) is

\[
\text{Gr}(V) = \bigsqcup_{n \geq 0} \text{Gr}_n(V).
\]

The total space of the tautological Euclidean vector bundle (of no constant rank) over \(\text{Gr}(V)\) consists of points \((x, U)\) such that \(x \in U \in \text{Gr}(V)\). We define \(\text{MGr}(V)\)
to be the Thom space of this tautological bundle over $\text{Gr}(V)$. The structure maps are given by

$$O(V, W) \wedge \text{MGr}(V) \to \text{MGr}(W)$$

$$(w, \varphi) \wedge (x, U) \mapsto (w + \varphi(x), \varphi^\perp \oplus \varphi(U)),$$

where φ^\perp is the orthogonal complement of the image of $\varphi : V \to W$. Multiplication maps are defined by direct sum:

$$\mu_{V, W} : \text{MGr}(V) \wedge \text{MGr}(W) \to \text{MGr}(V \oplus W)$$

$$(x, U) \wedge (x', U') \mapsto ((x, x'), (U, U')).$$

Unit maps are defined by

$$\eta(V) : S^V \to \text{MGr}(V), \quad v \mapsto (v, V).$$

The multiplication maps are binatural, associative, commutative and unital, making MGr an ultra-commutative ring spectrum. MGr is graded, with the k-th homogeneous summand given by

$$\text{MGr}^{[k]}(V) = \text{Th} \left(\text{Gr}_{|V|+k}(V) \right).$$

This shows MGr is concentrated in non-positive degrees and the unit morphism $\eta : S \to \text{MGr}$ is an isomorphism onto $\text{MGr}^{[0]}$. Let V be a representation of a compact Lie group G, we define the inverse Thom class $\tau_{G, V} \in \text{MGr}_G^G(S^V)$ as a class represented by the G-map:

$$t_{G, V} : S^V \to \text{Th}(\text{Gr}(V)) \wedge S^V = \text{MGr}(V) \wedge S^V$$

$$v \mapsto (0, \{0\}) \wedge (-v).$$

The internal degree of $\tau_{G, V}$ is equal to $-\dim V$.

Example 1.2. We define two ultra-commutative ring spectra MO and MOP. MOP is a Thom spectra over the orthogonal space BOP, whose value at an inner product space V is

$$BOP(V) = \bigcap_{n \geq 0} \text{Gr}_n(V^2).$$

Define $\text{MOP}(V)$ as the Thom space of the tautological vector bundle over $BOP(V)$. The structure maps are given by

$$O(V, W) \wedge \text{MOP}(V) \to \text{MOP}(W)$$

$$(w, \varphi) \wedge (x, U) \mapsto ((w, 0) + \text{BOP}(\varphi)(x), \text{BOP}(\varphi)(U)).$$

Multiplication maps are defined by

$$\mu_{V, W} : \text{MOP}(V) \wedge \text{MOP}(W) \to \text{MOP}(V \oplus W)$$

$$(x, U) \wedge (x', U') \mapsto (\kappa_{V, W}(x, x'), \kappa_{V, W}(U \oplus U')).$$
where $\kappa_{V,W} V^2 \oplus W^2 \sim (V \oplus W)^2$ is the preferred isometry defined by

$$
\kappa_{V,W}((v, v'), (w, w')) = ((v, w), (v', w')).
$$

Unit maps are defined by

$$
\eta^V : S^V \to \text{MOP}(V), \quad v \mapsto ((v, 0), (V, 0)).
$$

The multiplication maps make MOP an ultra-commutative ring spectrum. The orthogonal space BOP is \mathbb{Z}-graded, with k-th homogeneous summand

$$
\text{BOP}^k(V) = Gr_{|V|+k}(V^2).
$$

The Thom spectra MOP inherits the \mathbb{Z}-grading from BOP. $\text{MOP}(V)$ is the wedge sum of the Thom spaces $\text{MOP}^k(V)$ for $-|V| \leq k \leq |V|$ and thus

$$
\text{MOP} = \bigvee_{k \in \mathbb{Z}} \text{MOP}^k.
$$

We define $\text{MO} = \text{MOP}^{[0]}$. It is an ultra-commutative ring spectrum on its own right. Explicitly, $\text{MO}(V)$ is the Thom space of the tautological vector bundle over $Gr_{|V|}(V^2)$.

Example 1.3. We define two E_8-ring spectra mO and mOP, the Thom spectra over the orthogonal spaces bO and bOP. The value of bOP at an inner product space V is

$$
\text{bOP}(V) = \bigoplus_{n \geq 0} Gr_n(V \oplus \mathbb{R}^\infty),
$$

For a linear isometric embedding $\varphi : V \to W$, the induced map $\text{bOP}(\varphi) : \text{bOP}(V) \to \text{bOP}(W)$ is defined as

$$
\text{bOP}(\varphi)(L) = (\varphi \oplus \mathbb{R}^\infty)(L) + ((W - \varphi(V)) \oplus 0).
$$

Over $\text{bOP}(V)$ sits a tautological Euclidean vector bundle (of non-constant rank) and we define $\text{mOP}(V)$ as the Thom space of this tautological bundle. The structure maps are given by

$$
O(V, W) \wedge \text{mOP}(V) \longrightarrow \text{mOP}(W)
$$

$$
(w, \varphi) \wedge (x, U) \longrightarrow ((w, 0) + \text{bOP}(\varphi)(x), \text{bOP}(\varphi)(U)).
$$

The E_8-structures on mO and mOP are inherited from those on bO and bOP by the linear isometry operad. Multiplication maps are defined by

$$
\mu_{V,W} : L \wedge \text{mOP}(V) \wedge \text{mOP}(W) \longrightarrow \text{mOP}(V \oplus W)
$$

$$
\psi \wedge (x, U) \wedge (x', U') \longrightarrow (\psi_\uparrow(x, x'), \psi_\uparrow(U \oplus U')),
$$

where ψ_\uparrow is the linear isometric embedding

$$
\psi_\uparrow : V \oplus \mathbb{R}^\infty \oplus W \oplus \mathbb{R}^\infty \longrightarrow V \oplus W \oplus \mathbb{R}^\infty
$$

$$
(v, y, w, z) \longrightarrow (v, w, \psi(y, z)).
$$
Unit maps are defined by
\[\eta^V : S^V \to \mathbf{mOP}(V), \quad v \mapsto ((v, 0), (V \oplus 0)). \]

\(\mathbf{mOP} \) is \(\mathbb{Z} \)-graded, \(\mathbf{mOP}^{[k]}(V) \) is the Thom space of the tautological bundle over \(\mathbf{bOP}^{[k]}(V) = Gr_{V+V}'(V \oplus \mathbb{R}^\infty) \). Then \(\mathbf{mOP}(V) \) is the wedge sum of \(\mathbf{mOP}^{[k]}(V) \) for \(|V| + k \geq 0 \) and there is a decomposition
\[\mathbf{mOP} = \bigvee_{k \in \mathbb{Z}} \mathbf{mOP}^{[k]}. \]

We define \(\mathbf{mO} = \mathbf{mOP}^{[0]} \) to the zeroth summand in this decomposition.

The equivariant cohomology theories represented by the global Thom spectra are related by the following:
\[\mathbf{MGr}_G^G(A) \xrightarrow{\text{invert } \tau_{G,V}} \mathbf{mOP}_G^G(A) \xrightarrow{\text{invert all } \tau_{G,V}} \mathbf{MOP}_G^G(A) \]

More precisely, we define maps \(a : \mathbf{MGr} \to \mathbf{mOP} \) and \(b : \mathbf{MGr} \to \mathbf{mOP} \), whose values at an inner product space \(V \) are
\[a(V) : \mathbf{MGr}(V) \to \mathbf{mOP}(V) \quad (x, L) \mapsto ((x, 0), (V \oplus 0)), \]
\[b(V) : \mathbf{MGr}(V) \to \mathbf{mOP}(V) \quad (x, L) \mapsto ((x, 0), (L \oplus 0)). \]

The localized \(\mathbf{MOP} \) and \(\mathbf{mOP} \) are defined by
\[\mathbf{MGr}^G_k(A)[1/\tau_{G,V}] = \colim_{V \in \mathcal{V}(U_k)} \mathbf{MGr}^G_k(A \wedge S^V) \]
\[\mathbf{MGr}^G_k(A)[1/\tau_{G,R}] = \colim_{n \geq 0} \mathbf{MGr}^G_k(A \wedge S^n), \]
where the structure maps are
\[\mathbf{MGr}^G_k(A \wedge S^V) \xrightarrow{\tau_{G,V}} \mathbf{MGr}^G_k(A \wedge S^V \wedge S^{W-V}) \cong \mathbf{MGr}^G_k(A \wedge S^W), \]
\[\mathbf{MGr}^G_k(A \wedge S^n) \xrightarrow{\tau_{G,R}} \mathbf{MGr}^G_k(A \wedge S^n \wedge S^R) \cong \mathbf{MGr}^G_k(A \wedge S^{n+1}). \]

Theorem 1.4. The maps \(a \) and \(b \) are compatible with the colimits and they assemble into maps
\[a^\sharp : \mathbf{MGr}^G_k(A)[1/\tau_{G,V}] \to \mathbf{MOP}^G_k(A), \]
\[b^\sharp : \mathbf{MGr}^G_k(A)[1/\tau_{G,R}] \to \mathbf{mOP}^G_k(A). \]

The maps \(a^\sharp \) and \(b^\sharp \) are isomorphisms for every compact Lie group \(G \), based \(G \)-space \(A \) and integer \(k \).
1.2 Geometric equivariant bordism

Definition 1.5. Let G be a compact Lie group and X be a G-space. A singular G-manifold over X is a pair (M, h), where M is a closed smooth G-manifold and $h : M \to X$ is a continuous G-map. Two singular G-manifolds (M, h) and (M', h') are bordant if there is a triple (B, H, ψ), where B is a compact smooth G-manifold, $H : B \to X$ is continuous G-map, and ψ is an equivariant diffeomorphism:

$$\psi : M \cup M' \to \partial B$$

such that $(H \circ \psi)|_M = h$ and $(H \circ \psi)|_{M'} = h'$.

Bordism of singular G-manifolds over X is an equivalence relation. We denote by $\mathcal{N}_G(X)$ the set of bordism classes of n-dimensional singular G-manifolds over X. The sets becomes an abelian group under disjoint union.

Proposition 1.6. $\mathcal{N}_G(X)$ is an equivariant homology theory, i.e. it satisfies the following:

1. Functorial in continuous G-maps.
2. G-equivariant homotopy invariant.
3. Takes G-weak equivalences to isomorphisms.

Construction 1.7. There is a distinguished class $d_{G,V} \in \tilde{\mathcal{N}}_G(S^V)$ for a G-representation V. Stereographic projection is a G-equivariant map

$$\Pi_V : S(\mathbb{R} \oplus V) \to S^V, \quad (x, v) \mapsto \frac{v}{1 - x}.$$

We define a reduced G-bordism class over S^V by

$$d_{G,V} = [S(\mathbb{R} \oplus V), \Pi_V] \in \tilde{\mathcal{N}}_G(S^V).$$

Proposition 1.8. $d_{G,V} \wedge d_{G,W} = d_{G,V \oplus W} \in \tilde{\mathcal{N}}_{S^V \oplus S^W}$.

If G acts trivially on V and X is a cofibrant based G-space, then the exterior product map with $d_{G,V}$ is an isomorphism:

$$\wedge d_{G,V} : \tilde{\mathcal{N}}_n(X) \to \tilde{\mathcal{N}}_{n+|V|}(X \wedge S^V).$$

Construction 1.9. To every smooth closed G-manifold M, we associate a normal class $\langle M \rangle \in \mathcal{M}_{-m}$. This class is the geometric input for the Thom-Pontryagin map to equivariant mO-homology. If $\dim M = m$, then the class lives in the summand \mathcal{M}_{-m} of \mathcal{M}.

By Mostow-Palais embedding theorem, there is a G-equivariant embedding $i : M \hookrightarrow V$ for some G-representation V. Without loss of generality, assume V is
a sub-representation of the chosen complete G-universe \mathcal{U}_G. Define ν to be the normal bundle of the embedding, where the metric is provided by the inner product on V. We can also assume, the embedding is wide in the sense that the exponential map $(x, v) \mapsto i(x) + v$ on the unit disk bundle $D(\nu)$ of ν is a G-embedding into a tubular neighborhood of M. This determines a G-equivariant Thom-Pontryagin map

$$c_M : S^V \longrightarrow Th(Gr(V)) \wedge M_+ = MGr(V) \wedge M_+$$

by sending points outside the tubular neighborhood to the base point and

$$c_M(i(x) + v) = \left(\frac{v}{1 - |v|}, \nu_x\right) \wedge x.$$

The normal class is the homotopy class of the collapse map c_M.

Proposition 1.10. The normal class does not depend on the choice of a wide embedding.

Construction 1.11. Equivariant Thom-Pontryagin construction:

$$\Theta^G = \Theta^G(X) : \mathcal{N}_*_G^*(X) \longrightarrow m\mathcal{O}_G^*(X).$$

Let (M, h) be an m-dimensional singular G-manifold over a based G-space X. All the geometry is encoded in the normal class $\langle M \rangle \in MGr^G(M_+)$. We define

$$\Theta^G[M, h] = (b \wedge h)_\ast \langle M \rangle : p^G_\ast(\sigma^m) \in m\mathcal{O}_m^G(X),$$

where $b : MGr \rightarrow m\mathcal{O}$ is a map of ring spectra whose value at an inner product space V is

$$b(V) : MGr(V) \rightarrow m\mathcal{O}(V), \quad (x, L) \mapsto ((x, 0), (L \oplus 0)),$$

$\sigma \in \pi^G_1(m\mathcal{O}[1])$ is periodicity class, inverse to $t \in \pi^G_{-1}(m\mathcal{O}[i-1])$ represented by

$$(0, \{0\}) \in Th(Gr_0(\mathbb{R} \oplus \mathbb{R}^{\infty})) = m\mathcal{O}[i-1](\mathbb{R}),$$

and $p_G : G \rightarrow e$ is the projection map that induces a map $p^G_\ast : \pi^G_\ast(-) \rightarrow \pi^G_\ast(-)$.

Proposition 1.12. The class $\Theta^G[M, h] \in m\mathcal{O}_m^G(X)$ only depends on the bordism class of the singular G-manifold (M, h).

Example 1.13. $\Theta^G(d_G, V) = \tau_{G, V} \in m\mathcal{O}_m^G(S^V)$ is the shifted inverse Thom class in $m\mathcal{O}$.

Theorem 1.14. Θ^G is a transformation of equivariant homology theories and compatible with homomorphisms of compact Lie groups.

Theorem 1.15 (Wasserman). Let G be a compact Lie group that is isomorphic to a product of finite group and a torus. Then for every cofibrant G-space X, the Thom-Pontryagin map

$$\Theta^G(X) : \mathcal{N}_*_G^*(X) \longrightarrow m\mathcal{O}_G^*(X_+)$$

is an isomorphism.
Construction 1.16. We define stable equivariant bordism groups $\tilde{\Omega}^G_{*,*}(X)$ of a based G-space X as the localization of $\tilde{\Omega}^G_{*,*}(X)$ by formally inverting all classes $d_{G,V}$. That is
$$\tilde{\Omega}^G_{*,}(X) = \text{colim}_{V \in s(U_G)} \tilde{\Omega}^G_{*,*}(X \wedge S^V),$$
where $s(U_G)$ is the poset of finite dimensional G-representations in the G-universe U_G and for $V \subseteq W$ the structure map in the colimit is the multiplication
$$\tilde{\Omega}^G_{*,*}(X \wedge S^V) \to \tilde{\Omega}^G_{*,*}(X \wedge S^W).$$

As the Thom-Pontryagin construction takes $d_{G,V}$ to the shifted inverse Thom class $\tau_{G,V}$, the following diagram commutes

$$\begin{align*}
\tilde{\Omega}^G_{*,*}(X) & \xrightarrow{\Theta^G} m\Omega^G_{*,*}(X) \\
- \wedge d_{G,V} & \downarrow \quad \downarrow -\tau_{G,V} \\
\tilde{\Omega}^G_{*,*}(X \wedge S^V) & \xrightarrow{\Theta^G} m\Omega^G_{*,*}(X \wedge S^V).
\end{align*}$$

The colimit of this diagram assembles into a natural transformation:
$$\Theta^G : \tilde{\Omega}^G_{*,*}(X) \to m\Omega^G_{*,*}(X)[1/\tau].$$

Theorem 1.17. For every compact Lie group G and every cofibrant based G-space X, then map
$$\Theta^G(X) : \tilde{\Omega}^G_{*,*}(X) \to m\Omega^G_{*,*}(X)[1/\tau]$$
is an isomorphism of graded abelian groups.

Corollary 1.18. For a cofibrant based G-space, there are natural isomorphisms:
$$\tilde{\Omega}^G_{*,*}(X) \xrightarrow{\Theta^G} m\Omega^G_{*,*}(X)[1/\tau] \xrightarrow{\sim} m\Omega^G_{*,*}(X).$$

2 Equivariant complex cobordism spectra

2.1 Complex cobordism and formal groups

Definition 2.1. A cohomology theory is called complex oriented if it is multiplicative and it satisfies Thom isomorphism for (almost) complex vector bundles.

Proposition 2.2. Let E be a complex oriented cohomology theory, then

1. $E^*(\mathbb{CP}^\infty) \cong E_u[t]$ where $t \in E^2(\mathbb{CP}^\infty)$ is the first Chern class of the tautological line bundle ξ over \mathbb{CP}^∞.

2. Let $p_i : \mathbb{CP}^\infty \times \mathbb{CP}^\infty \to \mathbb{CP}^\infty$ be the projection map of the i-th component for $i = 1, 2$. Then $E^*(\mathbb{CP}^\infty \times \mathbb{CP}^\infty) \cong E_u[t_1, t_2]$, where $t_i = p_i^*c_1(\xi)$.

7
3. The tensor product of line bundles over $\mathbb{C}P^2$ induces a E_0-formal group structure on $spf E(\mathbb{C}P^2)$. Denote this formal group associated to a complex-oriented cohomology theory E by \hat{G}_E.

4. $E(S^{2k})$ can be identified ω^k, the k-th tensor power of the sheaf of invariant differentials on \hat{G}_E.

Example 2.3. Here are two examples of complex oriented cohomology theories and their associated formal groups:

1. For ordinary cohomology theory, $\hat{G}_H \approx \hat{G}_a$ is the additive formal group.
2. For complex K-theory, $\hat{G}_K \approx \hat{G}_m$ is the multiplicative formal group.

Theorem 2.4 (Quillen). The formal group associated to periodic complex cobordism MUP is the universal formal group. More precisely, the pair

$$(MU_*, MU_*(MU)) = (MUP_0, MUP_0(MUP))$$

classifies formal groups and strict isomorphisms between formal groups.

2.2 Real bordism

Let ρ_2 be the real regular representation of C_2.

Construction 2.5. We construct the real cobordism spectrum MUR. It is a C_2-equivariant commutative ring admitting a canonical homotopy presentation

$$MUR \approx \operatorname{holim} S^{-C_n} \wedge MU(n) \approx \operatorname{holim} S^{-\rho_2} \wedge MU(n).$$

We will first construct a commutative real algebra $MUR \in CAlg(Sp_R)$ and apply the Quillen equivalence:

$$i^! : Sp_R \leftrightarrow Sp^{C_2} : i^* .$$

We define MUR to be the spectrum $i_! MUR'$, where $MUR' \rightarrow MUR$ is a cofibrant commutative algebra approximation. Elements in this construction are described below:

Definition 2.6. The category I_C is the topological category whose objects are finite dimensional Hermitian vector spaces and whose morphism space is the Thom space

$$I_C(A, B) = Th(U(A, B); B - A),$$

where $U(A, B)$ is the Stiefel manifold of unitary embeddings $A \hookrightarrow B$ and $B - A$ is the orthogonal complement of A in B under the embedding.

The category I_R is the C_2-equivariant topological category whose objects are finite dimensional orthogonal real vector spaces and whose morphism space is the Thom space

$$I_R(V, W) = I_C(V_C, W_C),$$

with C_2 acting by complex conjugation.
Definition 2.7. The category Sp_C of complex spectra is the topological category of (continuous) functors $I_C \to T$.

The category Sp_R of real spectra is the topological category of C_2-enriched functors $I_R \to I_{C_2}$ and equivariant natural transformations.

Let $i : I_R \to I_{C_2}$ be the functor sending V to $V \otimes \rho_2$. The restriction functor $i^* : \text{Sp}_{C_2} \to \text{Sp}_R$ has both a left and right adjoint denoted by $i_!$ and i_*. $i_!$ sends S^V to $S^V\rho_2$.

The restriction functor $i_* : \text{Sp}_C \to \text{Sp}_R$ has an adjoint denoted by $i^!$.

We define the real spectrum MU_R by sending $V \in I_R$ to $MU_{C_2}^p V \cup \text{Th}_{C_2}^p BU_0$, with C_2 acting by complex conjugation. $MU_R \in \text{CAlg}(\text{Sp}_R)$ as the functor is a lax symmetric monoidal if we use Segal’s construction of $BU(V_C)$.

Proposition 2.8.

1. The non-equivariant spectrum underlying MU_R is the usual complex cobordism spectrum MU.

2. There is an equivalence $\Phi^{C_2} MU_R \simeq MO$.

We now describe the relations between MU_R, real orientations and formal groups. Consider $\mathbb{C}P^n$ and $\mathbb{C}P^\infty$ as pointed C_2-spaces under complex conjugation, with $\mathbb{C}P^0$ the base point. The fixed point spaces are $\mathbb{R}P^n$ and $\mathbb{R}P^\infty$, and they are homeomorphisms $\mathbb{C}P^n/\mathbb{C}P^{n-1} \simeq S^{n\rho_2}$. In particular $\mathbb{C}P^1 \simeq S^{2\rho_2}$.

Definition 2.9 (Araki). Let E be C_2-equivariant homotopy commutative ring spectrum. A real orientation of E is a class $\pi \in E_{C_2}^n(\mathbb{C}P^n)$ whose restriction to $E_{C_2}^n(\mathbb{C}P^1) = E_{C_2}^0(S^0) \simeq E_{C_2}^0(pt)$ is a unit. A real oriented spectrum is a C_2-equivariant ring spectrum E equipped with a real orientation.

Example 2.10. The zero section $\mathbb{C}P^\infty \to MU(1)$ is an equivariant equivalence and defines a real orientation $\pi \in MU_{C_2}^1(\mathbb{C}P^\infty)$, making MU_R into a real oriented spectrum.

Example 2.11. If (X, x_H) and (E, x_E) are two real oriented spectra, then $H \wedge E$ has two real orientations given by $x_H \otimes 1$ and $1 \otimes x_E$.

Theorem 2.12 (Araki). Let E be a real oriented cohomology theory, then there are isomorphisms

$$E^*(\mathbb{C}P^\infty) \simeq E^*[\pi],$$

$$E^*(\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \simeq E^*[\pi \otimes 1, 1 \otimes \pi].$$

It follows the tensor product map $\mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty$ defines a formal group law over $\mathbb{C}P^\infty$. A real orientation π corresponds to a coordinate the corresponding formal group.
If (E, x_E) is a real oriented spectrum, then $E \wedge MU_R$ has two orientations $x_E = x_E \otimes 1$ and $x_R = 1 \otimes x$. These two series are related by a power series

$$x_R = \sum b_i x_E^{i+1},$$

that defines classes $b_i = b_i^E \in \pi_1^C E \wedge MU_R$.

This power series is an isomorphism of formal group laws F_E to F_R over $\pi_2 C E \wedge MU_R$, where F_E and F_R are formal groups associated to (E, x_E) and (MU_R, x_R), respectively.

Theorem 2.13 (Araki). The map

$$E_*[b_1, b_2, \cdots] \to \pi_*^C E \wedge MU_R$$

is an isomorphism.

Passing to geometric fixed points

$$x: \mathbb{CP}^\infty \to \Sigma^2 MU_R \xrightarrow{\text{geom fixed pt}} a: \mathbb{RP}^\infty \simeq MO(1) \to \Sigma MO$$

defines the MO Euler class of the tautological line bundle. Like MU_*, Quillen shows that the multiplication $\mathbb{RP}^\infty \times \mathbb{RP}^\infty \to \mathbb{RP}^\infty$ induces a formal group law over MO_* that is universal formal group law F over a ring of characteristic 2 such that $[2]_F = 0$.

Let $e \in H^1(\mathbb{RP}^\infty; \mathbb{Z}/2)$ be the $\mathbb{HZ}/2$ Euler class (Stiefel-Whitney class) of the tautological line bundle. Over $\pi_*^C(\mathbb{HZ}/2 \wedge MO)$, the classes e and a are related by a power series

$$e = \ell(a) = a + \sum \alpha_n a^{n+1}.$$

Lemma 2.14. The composite series

$$\left(a + \sum \alpha_{2^k - 1} a^{2^k}\right)^{-1} \circ \ell(a) = a + \sum_{j>0} h_j a^{j+1}$$

has coefficients in $\pi_* MO$. The classes $h_{2^k-1} = 0$ and the remaining h_j are polynomial generators for the unoriented cobordism ring:

$$\pi_* MO = \mathbb{Z}/2[h_j \mid j \neq 2^k - 1].$$

Let $G = C_2^\ast$ and localize all spectra at the prime 2. Write $g = |G|$ and let $\gamma \in G$ be a fixed generator.

Definition 2.15. $MU^G := N_{C_2}^G MU_R$

For $H \subset G$, the unit of the restriction-norm adjunction gives a canonical commutative algebra map

$$MU^H \to i^H_* MU^G.$$

Write i^H_* for i^G_*.

10
2.3 Universal properties of real bordism

Let \(R_\ast \) be a graded ring and \(F(x, y) \in R_\ast[[x, y]] \) be a homogeneous formal group (\(\deg x = \deg y = -2 \)). Let \(c : R_\ast \to R_\ast \) be a graded ring homomorphism such that \(c_{2n} : R_{2n} \to R_{2n} \) is multiplication by \((-1)^n\). Define \(F^c = c^* F \), we have

\[
F^c(x, y) = -F(-x, -y).
\]

c induces strict isomorphisms \(F \xrightarrow{\sim} F^c \) and \(F^c \xrightarrow{\sim} F \) by \(c(x) = -[-1]_F(x) \). This is called the conjugate action on \(F \).

Proposition 2.16. \([HHR, Example 11.27]\) \(MU_\ast \) is universal in the sense that \(MU_\ast \to R_\ast \) classifying a homogeneous formal group law is \(C_2 \)-equivariant for any choice of conjugation action.

The real orientation \(i^* MU_\ast \to MU(\ast) \) for \(G = C_2 \) induces a formal group law \(F \) with a \(G \)-action that extends the conjugation action on by \(C_2 \subseteq G \).

Proposition 2.17. \([HHR, Proposition 11.28]\) This pair \((MU(\ast), F) \) is universal in the sense that

\[
\text{Hom}_{\text{gr}} \left(\pi^u_\ast \left(MU(\ast) \right), R_\ast \right) \simeq \left\{ \text{Formal groups over } R_\ast \text{ with a } G \text{-action extending the conjugation action by } C_2 \subseteq G \right\}
\]

References
