Talk 7: Operad pairs, the Steiner and linear ismetrles operands. Main reference: IP May, what precisely are E_{∞} ring spaces and Es ring spectra.

The main topic of this talk is operad pairs. Before me discuss that, Let us have a quick review of the notion of operate.

1. Review of operads.

Let U denote the category of (cmparely generated) un based spaces. An operand O in U consists of spaces $O(j) \in U$ for $j \geqslant 0$, such that (a) $O(0)$ is a point $*$,
(b) there is an element id $\in O(1)$ that comesponds to the identity operation,
(c) $O(j)$ has a right action of the symmetric group Σ_{j}.

There are Structure maps

$$
\gamma: U(k) \times O\left(j_{1}\right) \times \cdots \quad O\left(j_{k}\right) \rightarrow O\left(j_{1}+\cdots+j_{k}\right)
$$

that are suitably equivariant, unital, and associative.
We say thee O is an E_{∞} revered if $O(j)$ is contractible and Σ_{j} acts freely.

Let $X \in U$, an action θ of \mathcal{O} on X is given by suitably equivariant, unitas, and associative action maps:

$$
\theta: O(j) \times x^{j} \rightarrow x
$$

We can think of $O(j)$ as parametrizing a j-fold product operation on X. Let $j=0$, we can think of $\theta: * \rightarrow X$ as giving $x a$ basepoint.
2. Operand pairs

We can use opened pairs to encode two different operations on an objet. We could gain some motivation from the classical algebraic definition of seminings.

Def. A semiring is a set R equipped with two binary operations + and., called addition and multiplication, such that

- $(R,+)$ is a commutative monoid with identyier element called $0((a+b)+c=a+(b+c) ; 0+a=a=a+0 ; a+b=b+a)$
- $(R,$.$) is a monvid with identity element called I$

$$
((a \cdot b) \cdot c=a \cdot(b \cdot c) ; \quad 1 \cdot a=a=a \cdot 1)
$$

- Multiplication by the additive identity O annihilates R

$$
(a \cdot 0=0=0 \cdot a)
$$

- Multiplication left and right distributes over addition

$$
(a \cdot(b+c)=a \cdot b+a \cdot c ;(b+c) \cdot a=b \cdot a+c \cdot a)
$$

With this algebraic defluition in mind, we can define opened pants.
Instead of giving you the precise definition, let me just tell you the intuition so that you can appreciate the simple idea behind it. The precise definition can be found in, for example [May, The construction of Ex o ring spaces from bipermutathe categories. Section 4]
"Def" Lee ℓ, \mathcal{G} be operads. Write $\ell(0)=\{0\}, \mathscr{}(0)=\{1\}$ An action of \mathscr{Y} on \mathscr{C} consists of maps:

$$
\lambda: \zeta(k) \times \ell\left(j_{1}\right) \times \cdots \times \ell\left(j_{k}\right) \rightarrow \ell\left(j_{1}, j_{2} \cdots j_{k}\right)
$$

for $k \geqslant 0$ and $j_{r} \geqslant 0$ which satisfy certain distributivity, unity, equivariance, and nullity properties. Here, we think of e as parametrining addition and \mathcal{G} as parametrizing multiplication.

The intuition for taking procluits of j 's on the right hand side comes from the simple example

$$
(x+y)(a+b+c)=x a+x b+x c+y a+y b+y c
$$

Def. An speared par (φ, \mathcal{G}) consists of uperads \mathcal{C}, \mathcal{G}, together with an action of \mathcal{G} on τ.
Def An action of $(\mathcal{Y}, \mathscr{y})$ on X conses of an action θ of C on (X, O) and an action ξ of \mathcal{G} $(x, 1)$ for which the following diagram commutes.

$$
\begin{aligned}
& \mathscr{Y}(k) \times \mathscr{L}\left(j_{1}\right) \times x^{j_{1}} \times \ldots \times \mathscr{L}_{\left(j_{k}\right)} \times X^{j_{k}} \xrightarrow{i d \times \theta^{k}} \mathscr{y}(k) \times x^{k} \\
& \xi \downarrow \\
& \rfloor \xi \\
& \ell\left(j j_{2}-j_{k}\right) \times X^{j_{1} j_{2} \cdots j_{k}} \xrightarrow{\theta} X
\end{aligned}
$$

where the ξ on the left is defined by

$$
\xi\left(g ; c_{1}, y_{1}, \cdots, c_{k}, y_{k}\right)=\left(\lambda\left(g, c_{1}, \cdots, c_{k}\right) ; \prod_{Q} \xi\left(g ; y_{Q}\right)\right)
$$

where $g \in \mathcal{G}(k), c_{r} \in \mathscr{C}\left(j_{r}\right), y_{r}=\left(x_{r, 1}, \cdots, x_{r, j_{r}}\right)$
Q is the lexicographically ordered set of sequences
$Q=\left(q_{1}, \cdots, q_{k}\right)$ such that $1 \leq q_{r} \leq j r$, and

$$
Y_{Q}=\left(X_{1}, q_{1}, \ldots, \quad X_{k}, q_{k}\right)
$$

The diagram encodes the left distributivity law

Example: Recall uperad N with $N(j)=x$ for all \hat{j}.
These is one and only one way N can act on itself.
$A_{n}(N, N)$ space is precisely a commutative topological semi-ring.
Def We say (l, \mathcal{G}) is an top operand pair if t and ξ are both Exp uperads. An Ex ring space is a (l, ζ)-space where (l, \mathcal{l}) is some tex operand pair. 3. The canonical Ens uperad pair $(\mathcal{L}, \mathcal{L})$

The canonical multiplicative opened is the linear isometries opened L. We now recall its definition.

Let of denote the category of finite dimensional real inner product spaces and linear isometric isompphisms. Let of c denote the category of finite or countably infinite dimensional real inner produce spaces and linear isometries. For the latter, we trpologize inner proust spaces as the colimits of their finite dimentiond subspaces.

Let $U=R^{\infty}$ with its standard inner proclect. Define $\mathcal{L}(j)=I_{c}\left(u^{j}, u\right)$, where u^{j} is the sum of \hat{j} copies of u, with $u^{0}=\{0\}$. The element $i d \in \mathcal{L}(1)$ is the identity isometry, Σ_{j} acts on $\mathscr{L}(j)$ by permuting the inputs in U^{j}, and the structure maps γ ane defined by

$$
\gamma\left(g ; f_{1}, \cdots, f_{j}\right)=g_{0}\left(f_{1} \oplus \cdots \oplus f_{j}\right)
$$

Notice that \mathcal{L} is a suboperad of the endomorphism operad of U. Clearly the Σ_{j} action on $\mathcal{L}(j)$ is free. che con also show that $\mathcal{L}(j)$ is contractible [May, Ex ring spaces and Ens ring Spectra, Lemma 1.3]

Prop \mathcal{L} is an Ex o operad.

The canonical additive Gros operad is similar to the little cubes oqerads φ_{n} and the little discs operads O_{v}. It combines the gored jouperties of both.

Let's first recall the general definition of embeddings operad. let X be an gen subspace of a finite dimensitionalinner produce space V. Define the embeddings operad Embx as follows. Let Ember (j) be the spar of j-tuples of embeddings with disjoint images. The element id $\in \operatorname{Tim} b_{x}(1)$ is the identity embedding, Σ_{j} acts on Tomb (j) by permuting embeddings. The structure maps

$$
\left.r: \operatorname{Timb}_{x}(k) \times \operatorname{Tim}_{x}\left(j_{1}\right) \times \cdots \times \operatorname{Tim}_{x}\left(j_{k}\right) \rightarrow \operatorname{Tim}_{x} i_{j}+\cdots+j_{k}\right)
$$ are defined by composition: for $g=\left(g_{1}, \ldots, g_{k}\right) \in \operatorname{Ian} b_{x}(k)$ and $f_{r}=\left(f_{r, 1},-1, f_{r, j r}\right)\left(\operatorname{Tim} b_{x}\left(j_{r}\right), 1 \leqslant r \leqslant k\right.$, the roth block of jr embeddings in $\gamma\left(g ; f_{1}, \cdots, f_{k}\right)$ is given $b_{y} g_{r} \circ f_{r, s}, 1 \leq s \leq j_{r}$.

Taking $X=(0,1)^{n} \subset \mathbb{R}^{n}$, we obtain a suboperad l_{n} of Tmbx by restricting to the little n-cubes, namely those embeddings $f: X \rightarrow X$ such that $f=l_{1} \times \cdots \times l_{n}$, where $l_{i}(t)=a_{i} t+b_{i}$, $a_{i}>0, \quad b_{i} \geqslant 0$.

For general V, let x be the open unit disk $D(v) \subset V$. We obtain a suboperad D_{v} of $T_{m} b_{v}$ by restricting to the Little V-disks. namely these embeddings $f: D(v) \rightarrow D(v)$ such that $f=a v+b, a>0, b \in D(v)$

Let $F(x, j)$ denote the configuration space of j-tuples of distance elements of X, with its permutation action by Σ_{j}. By restricting the little n-cubes or little V-disks to their values at the center porte, we obtain Σ_{j}-equivariant deformation retractions.

$$
\begin{aligned}
& e_{n}(j) \xrightarrow{e v_{0}} F\left((0,1)^{n}, j\right) \cong F\left(\mathbb{R}^{n}, j\right) \\
& V_{v}(j) \xrightarrow{e v_{0}} F(D(v), j) \cong F(v, j)
\end{aligned}
$$

This gives control aver homotory types.
Prop. $F\left(\mathbb{R}^{n}, j\right)$ is $(n-2)$-connected. Let $\mathbb{R}^{\infty}=\underset{n}{\operatorname{colim}} \mathbb{R}^{n}$. then $F\left(\mathbb{R}^{\infty}, j\right)=\operatorname{colim}_{n} F\left(\mathbb{R}^{n}, j\right)$ is \bar{i}_{j}-free and contractible.
[See, for example. May; The geomeng of iterated lop spaces Section 4 .

The little n-cube uperads
(i). If f is a little n-cube, then fid is a little $(n+1)$-cube, This incluces a suspension map of operads $l_{n} \rightarrow l_{n+1}$. Taking whinnts over n gales the infinite little cubes operad l_{∞}, and it is an Ex o perad.
(Я): little n-mbies are too square to define $U(n)$ actions.

The little V-disk oread O_{V}
(\because) Let f be e little V-disk, $g \in O(v), \quad g g^{-1}$ is also a little V-disk.
(i): For $W=V \otimes V^{\perp}$, little V-dishes f are too round for fid to be a little W-disk. We can send a little U-disk $v \rightarrow a v+b$ to the little w-disk $w \rightarrow a w+b$. But that is not compatible with the decomposition $S^{\omega} \cong S^{U} \wedge S^{v^{\perp}}$ used to identify $\Omega^{\omega} Y$ with $\Omega^{v^{\prime}} \Omega^{v} \%$ Here, we let S^{v} denote the one point compartification of V and let $\Omega^{V} Y=F^{V}\left(S^{V}, Y\right)$ denote the V-fold loop space of Y

Steiner operands k_{u} combine all of the good properties of L_{n} and D_{v}. These uperads ave defined in terms of paths of embeddings rather than just embeddings.

Let $R_{J} \subset \operatorname{timb}_{V}(1)$ be the subspace of distance reducing embeddings $f: V \rightarrow V$, i,e. $\quad|f(v)-f(w)| \leq|v-w|, \quad \forall v, w \in V$. A Steiner path is a map $h: I \rightarrow R J$ such that $h(1)=i d$. Let P_{v} be the space of Steiner paths. Define $T: P_{v} \rightarrow R_{v}$ by evaluating at $0, \pi(h)=h(0)$. Define $K_{v}(\hat{j})$ to be the space of \bar{j}-tuples $\left(h_{1}, \cdots, h_{j}\right)$ of Steiner paths such that the $\pi\left(h_{r}\right)$ have disjoint images. id $\in K_{U}(1)$ is the constant path at the identity embedding, $\Sigma_{\hat{j}}$ alts on $K_{v}(\hat{\jmath})$ by permutations, the structure maps γ are defined by composition.

Again, it is dear that the Σ_{j} action is free. Morearev. Steiner proved the composite maps $K_{v}(j) \xrightarrow{T} \operatorname{Zin} b_{v}(j) \xrightarrow{e v_{0}} F(v, j)$ are Σ_{j}-equivariant deformation retractions.

Finally, we define the canonical additive Gro read, denoted l, to be the Steiner operad $K_{u}=K_{1 R^{\infty}}=\underset{v}{\operatorname{com}} K_{v}$ with V running through the finite dimensional subspaces of \mathbb{R}^{∞}. Then, analogers to the little cubes operad $l_{\infty}, l_{\text {is also }}$ an Z_{∞} operad.

Prop. $(\mathcal{L}, \mathcal{L})$ is an Z_{∞} oread pair.
Intuition: we have maps

$$
\lambda: ~ f\left(v_{1} \oplus \cdots \oplus v_{k}, w\right) \times \operatorname{Imb}_{v_{1}}\left(j_{1}\right) \times \cdots \times \operatorname{G}_{m b} b_{v_{k}}\left(j_{k}\right) \rightarrow \operatorname{Emb}_{w}\left(j_{1} \cdots j_{k}\right)
$$

defined as follows: let $g: V_{1} \oplus \ldots \oplus V_{k} \rightarrow w$ be a linear isometric isomuphism. let $f_{r}=\left(f_{r, 1}, \cdots, f_{r i} j_{r}\right) \in \operatorname{Timb}_{V_{r}}\left(j_{r}\right), 1 \leq r \leq k$. Consider the set of sequences $Q=\left(q_{1}, \cdots, q_{k}\right), 1 \leqslant q_{k} \leq j r$, ordered lexicographically. Identifying direct sums with direct products, the Q-th embedding of $\lambda\left(g ; f_{1}, \cdots, f_{k}\right)$ is the composite $g f_{Q} g^{-1}$ where $f_{Q}=f_{1}, q_{1} \times \cdots \times f_{k, q_{k}}$.

