# $H_*(CX)$ and $H_*(\Omega^n \Sigma^n X)$

#### Weinan Lin

#### Aug 15, 2023

For a prime p, write  $H_*X = H_*(X; \mathbb{F}_p)$  and  $H^*(X; \mathbb{F}_p)$ . We assume p = 2 but everything in this notes has odd prime versions that you can find in *Homology of iterated loop spaces* and *A general algebraic approach to Steenrod operations*.

## **1** Steenrod operations

For any space X, we have Steenrod operations

$$Sq^s: H^*(X) \to H^{*+s}(X)$$

The Steenrod operations satisfy the Adem relations:

$$Sq^iSq^j = \sum_k (i-2k, j-k+i-1)Sq^{i+j-k}Sq^k$$

where i < 2j and we have  $Sq^1 = 1$ . Here  $(m, n) = \binom{m+n}{n}$  and is trivial if m < 0 or n < 0.

The Steenrod algebra  $\mathcal{A}$  is generated by  $Sq^s$  with Adem relations. Hence cohomology groups  $H^*(X)$  are modules over  $\mathcal{A}$ , and homology groups  $H_*(X)$  are (left) modules over the opposite algebra  $\mathcal{A}^{op}$ .

## 2 Homology operations

Homology operations are also called Dyer-Lashof operations.

**Theorem 2.1.** Let  $\mathscr{C}$  be an  $E_{\infty}$  operad and X a  $\mathscr{C}$ -space. Then we have homomorphisms

$$Q^s: H_*(X) \to H_{*+s}X$$

such that

- 1.  $Q^s$  are natural with respect to C-spaces.
- 2.  $Q^s x = 0$  if s < |x|.
- 3.  $Q^s x = x^p$  if s = |x|.
- 4.  $Q^{s}[e] = 0$  if s > 0 and  $[e] \in H_{0}(X)$  is the identity element.

5. 
$$Q^{s}(x \otimes y) = \sum_{i+j=s} Q^{i} \otimes Q^{j}$$
 where  $x \otimes y \in H_{*}(X \times y)$ .  
 $Q^{s}(xy) = \sum_{i+j=s} Q^{i}xQ^{j}y$  where  $x, y \in H_{*}(X)$ .  
 $\psi(Q^{s}x) = \sum_{i+j=s} \sum_{i+j=s} Q^{i}x' \otimes Q^{j}x''$  where  $\psi$  is the coalgebra structure map of  $H_{*}(X)$  and  $\psi(x) = \sum_{i=1}^{s} x' \otimes x''$ .

6. The Adem relations hold. If 2r > s, we have

$$Q^{r}Q^{s} = \sum_{i} (-1)^{r+i} (pi - r, r - (p-1)s - i - 1)Q^{r+s-i}Q^{i}$$

7. The Nishida relations hold.

$$P_*^r Q^s = \sum_i (-1)^{r+i} (r - pi, s(p-1) - pr + pi) Q^{s-r+i} P_*^i$$

The homology operations can be defined by the structure map passing to the homology:

$$H_*(\mathscr{C}(p)\otimes X^p)\to H_*X$$

$$e_i \otimes x^p \mapsto Q^* x$$

The Adem relations can be proved by maps in homology induced by the commutative diagram



Basically you can start from an element in  $H_*(\mathscr{C}(p) \times \mathscr{C}(p)^p \times X^{p^2})$  and get two elements in  $H_*X$  which should be equal.

You can find proofs of other items from the two references.

We define R to be the algebra generated by  $Q^s$  with the Adem relations.

If a (graded) *R*-module *M* satisfy the condition 2 in Theorem 1, we say that it is an allowable *R*-module. If *M* enjoys all the structures and properties we see in  $H_*(X)$  in Theorem 1, we call it an allowable *AR*-Hopf algebra.

#### **3** $H_*(CX)$

For any space X,  $H_*X$  is a cocommutative component unstable A-coalgebra. Since CX is an  $E_{\infty}$ -space, we know that  $H_*(CX)$  is an allowable AR-Hopf algebra.

There is a forgetful functor from the category of allowable AR-Hopf algebras to the category of cocommutative component unstable A-coalgebras. It is not hard to construct the left adjoint which is the free functor from the category of cocommutative component unstable A-coalgebras to the category of allowable AR-Hopf algebras. We denote this free functor by WE.

**Theorem 3.1.** There is a natural isomorphism  $H_*(CX) \cong WEH_*(X)$ .

When Y is a group like  $E_{\infty}$  algebra,  $H_*Y$  is an allowable AR-Hopf algebra with conjugation  $\chi$ . For  $g \in H_0Y$  we have  $\chi(g) = g^{-1}$ .

**Theorem 3.2.** There is a natural isomorphism  $H_*(QX) \cong GWEH_*(X)$  where G is the free functor from the category of allowable AR-Hopf algebras to the category of allowable AR-Hopf algebras with conjugation.

Remark 3.3. There are similar theorems about  $H_*(C_nX)$  and  $H_*(\Omega^n\Sigma^nX)$ , who are both functors of  $H_*X$ .

Remark 3.4. If  $(\mathscr{C}, \mathscr{G})$  is an operad pair and  $\mathscr{G}$  acts on X, then CX is an  $E_{\infty}$  ring space and  $H_*(CX)$  is equipped with two sets of Dyer-Lashof operations  $\{Q^s\}, \{\tilde{Q}^s\}$ . These operations interact with each other via formulas such as the mix Adem relations. We can also state theorems about  $H_*(CX)$  in terms of  $H_*X$  in this situation.

Remark 3.5. If X is an  $E_{\infty}$  ring space, then  $H_*X$  is a Hopf ring which is equipped with a coalgbera structure and two algebra structure. In other words, we have an additive multiplication # and a multiplicative multiplication  $\circ$ . They satisfy the distributivity law

$$(r\#s)\circ t = \sum (r\circ t')\#(s\circ t'')$$

where  $\psi(t) = \sum t' \otimes t''$ .