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For a prime p, write H∗X = H∗(X;Fp) and H∗(X;Fp). We assume p = 2 but everything in this
notes has odd prime versions that you can find in Homology of iterated loop spaces and A general
algebraic approach to Steenrod operations.

1 Steenrod operations

For any space X, we have Steenrod operations

Sqs : H∗(X) → H∗+s(X)

The Steenrod operations satisfy the Adem relations:

SqiSqj =
∑
k

(i− 2k, j − k + i− 1)Sqi+j−kSqk

where i < 2j and we have Sq1 = 1. Here (m,n) =
(
m+n
n

)
and is trivial if m < 0 or n < 0.

The Steenrod algebra A is generated by Sqs with Adem relations. Hence cohomology groups
H∗(X) are modules over A, and homology groups H∗(X) are (left) modules over the opposite algebra
Aop.

2 Homology operations

Homology operations are also called Dyer-Lashof operations.

Theorem 2.1. Let C be an E∞ operad and X a C -space. Then we have homomorphisms

Qs : H∗(X) → H∗+sX

such that

1. Qs are natural with respect to C -spaces.

2. Qsx = 0 if s < |x|.

3. Qsx = xp if s = |x|.

4. Qs[e] = 0 if s > 0 and [e] ∈ H0(X) is the identity element.

5. Qs(x⊗ y) =
∑

i+j=sQ
i ⊗Qj where x⊗ y ∈ H∗(X × y).

Qs(xy) =
∑

i+j=sQ
ixQjy where x, y ∈ H∗(X).

ψ(Qsx) =
∑∑

i+j=sQ
ix′ ⊗Qjx′′ where ψ is the coalgebra structure map of H∗(X) and ψ(x) =∑

x′ ⊗ x′′.
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6. The Adem relations hold. If 2r > s, we have

QrQs =
∑
i

(−1)r+i(pi− r, r − (p− 1)s− i− 1)Qr+s−iQi

7. The Nishida relations hold.

P r
∗Q

s =
∑
i

(−1)r+i(r − pi, s(p− 1)− pr + pi)Qs−r+iP i
∗

The homology operations can be defined by the structure map passing to the homology:

H∗(C (p)⊗Xp) → H∗X

ei ⊗ xp 7→ Q∗x

The Adem relations can be proved by maps in homology induced by the commutative diagram

C (p)× C (p)p ×Xp2 //

��

C (p2)×Xp2

%%
X

C (p)× (C (p)×Xp)p // C (p)×Xp

99

Basically you can start from an element in H∗(C (p)×C (p)p ×Xp2

) and get two elements in H∗X
which should be equal.

You can find proofs of other items from the two references.
We define R to be the algebra generated by Qs with the Adem relations.
If a (graded) R-module M satisfy the condition 2 in Theorem 1, we say that it is an allowable

R-module. If M enjoys all the structures and properties we see in H∗(X) in Theorem 1, we call it an
allowable AR-Hopf algebra.

3 H∗(CX)

For any space X, H∗X is a cocommutative component unstable A-coalgebra. Since CX is an
E∞-space, we know that H∗(CX) is an allowable AR-Hopf algebra.

There is a forgetful functor from the category of allowable AR-Hopf algebras to the category of
cocommutative component unstable A-coalgebras. It is not hard to construct the left adjoint which is
the free functor from the category of cocommutative component unstable A-coalgebras to the category
of allowable AR-Hopf algebras. We denote this free functor by WE.

Theorem 3.1. There is a natural isomorphism H∗(CX) ∼=WEH∗(X).

When Y is a group like E∞ algebra, H∗Y is an allowable AR-Hopf algebra with conjugation χ.
For g ∈ H0Y we have χ(g) = g−1.

Theorem 3.2. There is a natural isomorphism H∗(QX) ∼= GWEH∗(X) where G is the free functor
from the category of allowable AR-Hopf algebras to the category of allowable AR-Hopf algebras with
conjugation.

Remark 3.3. There are similar theorems about H∗(CnX) and H∗(Ω
nΣnX), who are both functors of

H∗X.
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Remark 3.4. If (C ,G ) is an operad pair and G acts on X, then CX is an E∞ ring space and H∗(CX)
is equipped with two sets of Dyer-Lashof operations {Qs}, {Q̃s}. These operations interact with each
other via formulas such as the mix Adem relations. We can also state theorems about H∗(CX) in
terms of H∗X in this situation.

Remark 3.5. If X is an E∞ ring space, then H∗X is a Hopf ring which is equipped with a coalgbera
structure and two algebra structure. In other words, we have an additive multiplication # and a
multiplicative multiplication ◦. They satisfy the distributivity law

(r#s) ◦ t =
∑

(r ◦ t′)#(s ◦ t′′)

where ψ(t) =
∑
t′ ⊗ t′′.
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