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1. Introduction

Monoidal categories are categories with an addition and a unit satisfying associa-
tivity and unitality. Monoidal categories appearing in nature usually don’t have strict
associativity or unitality, but we can strictify to get an equivalent strict monoidal cat-
egory.

When symmetry are involved, we can define braided monoidal categories and sym-
metric monoidal categories. Symmetric strict monoidal categories are also called per-
mutative categories.

Permutative categories are inputs for the categorical infinite loop space machine. If
you take the nerve of a permutative category and then realize, you get its classifying
space, and the addition induces an addition on the classifying space which turns out
to be E∞. We therefore obtain a categorical infinite loop space machine:

Perm Cat
classifying space
ÐÐÐÐÐÐÐÐÐ→ E∞−space

infinite loop space machine
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ spectra.

This story can also be enhanced to a multiplicative one.
We have a notion of bimonoidal categories, where the categories are equipped with

two monoidal structures, one additive and one multiplicative. The definition also re-
quires these two operations to have distributivity and annihilation, under certain coher-
ence conditions. We also have a strictification theorem in the bimonoidal case, from
strong symmetric bimonoidal categories to bipermutative categories.

Bipermutative categories are the input for the categorical multiplicative infinite loop
space machine. One expect to have

Biperm Cat
classifying space
ÐÐÐÐÐÐÐÐÐ→ E∞-ring space

machine
ÐÐÐÐ→ E∞-ring spectra.

However, the first step is more complicated to show than the non-multiplicative case.
It requires the notion of the categorical of operators, and will be introduced in the next
lecture.

The purpose of this talk is to introduce the input of the categorical infinite loop space
machine, i.e. symmetric (bi)monoidal categories and the (bi)permutative categories.
We will also show the E∞-ness of the classifying space of a permutative category. We
will also prove the strictfication theorems.

2. Monoidal category

A monoidal category is a category equipped with a “tensor product” satisfying
associativity and unital properties.

Definition 2.1 (Monoidal category). A monoidal category is a category C equipped
with the following monoidal structure satisfying certain coherence conditions.
(1) tesor product: a bifunctor

⊗ ∶ C ×C → C
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(2) a unit object: I ∈ C,
(3) associator: natural isomorphism α with components

αA,B,C ∶ A⊗ (B⊗C) ≃ (A⊗ B)⊗C.

(4) left and right unitors: natural isomorphisms λ and ρ with components

λA ∶ I ⊗ A ≃ A,

ρA ∶ A⊗ I ≃ A.

The coherence conditions for these natural transformations are the following: for all
objects, the following diagram commutes.
(1) the pentagon diagram (all arrows are isomorphisms given by the associator):

A⊗ (B⊗ (C⊗D))

A⊗ ((B⊗C)⊗D) (A⊗ B)⊗ (C⊗D)

(A⊗ (B⊗C))⊗D ((A⊗ B)⊗C)⊗D

,

(2) the triangle diagram

A⊗ (I ⊗ B) (A⊗ I)⊗ B

A⊗ B

αA,I,B

ρA⊗idB idA⊗λB

.

We sometimes write (C,⊗, I) to denote a monoidal category with tensor ⊗ and
unite I.

There are some variants to such a structure.

Definition 2.2.

(1) A monoidal category with a commutativity constraint γ is called a braided
monoidal category. Here γ is a natural isomorphism with components

γA,B ∶ A⊗ B → B⊗ A

and satisfies compatibility conditions with respect to α ∶ the following diagram
commutes (permuting A across B⊗C can be done in two steps or at once).

(A⊗ B)⊗C A⊗ (B⊗C) (B⊗C)⊗ A

(B⊗ A)⊗C B⊗ (A⊗C) B⊗ (C⊗ A)

.

(2) For a braided monoidal category, when γ2
= id, the structure is called a

symmetric monoidal category.
(3) For a symmetric monoidal category, when the associativity and unitality hold

strictly, i.e. when α, γ and ρ gives identities, it is called a permutative category.

Example 2.3.
(1) (Set,×,{∗}), the category of sets with the cartesian product.
(2) (Set,⊔,∅), the category of sets with the disjoint union.
(3) (Spc

∗
,∧, S0

), the category of pointed spaces with the smash product.
(4) (Spc

∗
,×,{∗}), the category of pointed spaces with the cartesian product.
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Remark 2.4. Note that not many monoidal categories in nature have strict associa-
tivity, i.e. the associator is identity. For example, for (Set,×,{∗}), we have

(A × B)×C ≅ A × (B ×C).

But this is not a strict equality, since elements in the left are of the form ((a, b), c)
and elements in the right are of the form (a, (b, c)).

2.1. Monoidal functors. Monoidal functors are functors between monoidal categories
that preserves the monoidal structures. There are different variants.

(1) lax monoidal functor or monoidal functor. Such a functor is equipped with a
natural transformation

φA,B ∶ F(A)⊗ F(B)→ F(A⊗ B)

satisfying associativity and unitality coherence conditions.
(a) (associativity)

(F(A)⊗ F(B))⊗ F(C) F(A)⊗ (F(B)⊗ F(C)) F(A)⊗ F(B⊗C)

F(A⊗ B)⊗ F(C) F((A⊗ B)⊗C)) F(A⊗ (B⊗C))

(b) (unitality)

I ⊗ F(A) F(I)⊗ F(A)

F(A) F(I ⊗ A)

,
F(A)⊗ I F(A)⊗ F(I)

F(A) F(A⊗ I)

.

(2) A op-lax monoidal functor is one where the natural transformation maps in
the other direction.

(3) A strong monoidal functor is a lax monoidal functor where the natural trans-
formation is an isomorphism.

(4) A strict monoidal functor is a lax monoidal functor where the natural transfor-
mation gives identities.

3. Strictification

As mentioned before, monoidal categories are ubiquitous, but not are strict monoidal
ones. However,we can always replace a monoidal category with a strict one via stricti-
fication.

Theorem 3.1 ([Isa]). For any monoidal category C, there is a naturally equivalent
strict monoidal category D.

We take the free topological monoid to construct a strict monoidal category.

Proof. We construct D as follows.
(1) First, we define the objects to be the free topological monoid generated by the
objects of C, and identify the unit of the topological monoid with the unit of C. We
write the objects by juxtaposition.
(2) We can define a map π ∶ obj(C)→ obj(D):

π(A1 A2...An)↦ (A1 ⊗ (A2 ⊗ (...⊗ (An−1 ⊗ An)))).

(3) The morphisms are defined as follows:

HomD(x, y) = {x}×HomC(π(x), π(y))× {y}.
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(4) We extend π to a functor by

π((x, f , y)) = f ∶ π(x)→ π(y).

(5) We can define a functor ι ∶ C → D:

ι(A
f
Ð→ B) = (A, f , B).

It is straight forward to check that the functors π and ι are monoidal functors, and
that πι = id and ιπ is natural isomorphic to id.

∎

Using a similar construction, we can prove that every symmetric monoidal category
can be strictified to a permutative category.

4. Permutative category

Definition 4.1. The categorical Barratt–Eccles operad Σ̃ is a operad in categories,
whose each level is of the form

Σ̃(j) = EΣj.
Here E ∶ Grp → Cat is the translation functor. The operad action is given by block
permutation.

Proposition 4.2. Permutative categories are algebras over the categorical Barratt–
Eccles operad.

Proof. The commutativity constraint γ is given by the morphisms between two objects
in EΣ2. ∎

Corollary 4.3. The classifying space of a permutative category is a E∞ space.

Proof. We can take the classifying space levelwise to Σ̃ to get the topological operad
BΣ̃. The classifying space of a permutative category is an algebra over this operad. The
operad is E∞, since BEΣj is Σj-free and contractible (it is a model for the universal

space EΣj). ∎

5. Bimonoidal category

The “bi” in the name “bimonoidal category” means that such a category is equipped
with two different monoidal structures: an addition and a multiplication.

Sometimes it is called a “rig” category, where “rig” stands for “ring without nega-
tives”.

Definition 5.1 (Symmetric bimonoidal category, [LaP]). A symmetric bimonoidal cate-
gory C is a category with two symmetric monoidal structures: (C,⊕, 0) for the addition
and (C,⊗, 1) for the multiplication, together with natural left and right distributivity
natural monomorphisms with components:

δl ∶ A⊗ (B⊕C)→ (A⊗ B)⊕ (A⊗C),

δl ∶ (A⊕ B)⊗C → (A⊗C)⊕ (B⊗C),
and natural annihilation isomorphisms with components:

al ∶ A⊗ 0→ 0,

ar ∶ 0⊗ A → 0,
and satisfying certain coherence conditions.

We refer the readers to [LaP] for a detailed discussion of the coherence conditions
and their relations.

[LaP] only requires the distributivity to be monomorphisms. We focus on when the
left distributivity is a natural isomorphism and call such a structure a “strong symmetric
bimonoidal category”.
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Example 5.2.

(1) Example 2.3(1) for addition and Example 2.3(2) for multiplication.
(2) There is a type of symmetric bimonoidal categories, where the addition is given

by the category-theoretical coproduct, and the multiplication is given by the
category-theoretical product. We call such a category a distributive category.
● The category of finite sets.
● The category of topological spaces.

Definition 5.3 (Bipermutative categories). A bipermutative category is a symmetric
bimonoidal category where
(1) both monoidal structures are permutative, and
(2) the left distributivity is an natural isomorphism, and the right distrubitivity is
identity, and
(3) the following diagram is commutative.

(A⊕ B)⊗ (C⊕D) (A⊕ B)⊗C⊕ (A⊕ B)⊗D

(A⊗C)⊕ (B⊗C)⊕ (A⊗D)⊕ (B⊗D)

A⊗ (C⊕D)⊕ B⊗ (C⊕D) (A⊗C)⊕ (A⊗D)⊕ (B⊗C)⊕ (B⊗D)

.

Remark 5.4. One of the coherence conditions one expect a symmetric bimonoidal
category to satisfy is the following commutative diagram:

A⊗ (B⊕C) (A⊗ B)⊕ (A⊗C)

(B⊕C)⊗ A (B⊗ A)⊕ (C⊗ A).

c⊗

δl

c⊗⊕c⊗
δr

By this diagram, the left and right distributivity determines each other. In the definition
of bipermutative categories, it is required that left distributivity is an isomorphism and
the right one is an identity. It is unreasonable to require both to be isomorphism by
the above diagram, since the vertical arrows are only isomorphisms. However, it makes
no difference to choose the left to be identity.

6. Bistrictification

Theorem 6.1. [Strictification theorem, [May]] Any strong symmetric bimonoidal cat-
egory is naturally equivalent to a bipermutative category.

Proof. To construct a bipermutative category D that is equivalent to a strong sym-
metric bimonoidal category C, we again use the idea of “constructing the free thing
and showing the equivalence”.
(1) The objects of D is constructed two steps.

(a) First we take the free topological monoid M generated from obj(C) with product
⊗, subject to relations e = 1 and annihilations. We denote the elements of M by
A1 ⋅ A2 ⋅ ... ⋅ An where Ai is in obj(C).
(b) Then we take the free topological monoid generated by M with product ⊕ subject
to the relation e = 0. We denote these elements by x1 + ...+ xn where xn is in M.
(2) We can extend ⋅ to all objects of D by

(x1 + ...+ xn) ⋅ (y1 + ...+ ym) = (x1 ⋅ y1)+ (x1 ⋅ y2)+ ...+ (xn ⋅ ym).

Here xi and yi are in M, and xi ⋅ yj is the monoidal tensor product of xi and yj in M.
The bimonoidal structure is given by ⋅ and +.
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(3) We define a map π1 from M to obj(C) as in the previous proof, and define a map
π ∶ obj(D)→ obj(C) by

π(A1 + A2 + ...+ An) = π1(A1)⊕ ...⊕π1(An),

where Ai is in M.
(4) The morphisms are defined to be

HomD(x, y) = {x}×HomC(π(x), π(y))× {y}.

One can check that D is bipermutative.
(5) The map π extends to a functor.
(6) We can define a functor ι ∶ C → D similarly as in the previous proof.
(7) One can check that both functors preserves the symmetric bimonoidal structures,
and πι = id and there is a natural isomorphism ιπ Ô⇒ id. ∎

Remark 6.2. In the proof of Theorem 6.1, the constructed category D only has left
distributivity isomorphism but not identity. For example, let A, B, C, D be elements in
the original strong symmetric bimonoidal category. Consider the elements A, B, and
C +D in D. The left distributivity gives

(A + B) ⋅ (C +D)→ (A + B) ⋅C + (A + B) ⋅D.

By definition of ⋅, we have

LHS = A ⋅C + A ⋅D + B ⋅C + B ⋅D ≠ A ⋅C + B ⋅C + A ⋅D + B ⋅D = RHS.

We have remarked in Remark 5.4 about the asymmetry in distributivity and that either
choice works. If one wants left distributivity identity instead of the right, the proof of
Theorem 6.1 also needs to be adjusted.
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