Dirichlet character twisted Eisenstein series and J-spectra

Ningchuan Zhang 张凝川 nzhang28@illinois.edu

University of Illinois at Urbana-Champaign

International Workshop on Algebraic Topology 2019 August 19, 2019 Background

Definition

Background

00000

Bernoulli numbers B_n are defined to be the coefficients in the Taylor expansion:

$$\frac{te^t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.$$

Definition

Bernoulli numbers B_n are defined to be the coefficients in the Taylor expansion:

$$\frac{te^t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.$$

• B_n shows up in number theory:

$$E_{2k}(q) = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

Definition

Bernoulli numbers B_n are defined to be the coefficients in the Taylor expansion:

$$\frac{te^t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.$$

• B_n shows up in number theory:

$$E_{2k}(q) = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n.$$

• B_n shows up in algebraic topology: $|\pi_{4k-1}(J)|$ is equal to the numerator of $4k/B_{2k}$.

Definition

Bernoulli numbers B_n are defined to be the coefficients in the Taylor expansion:

$$\frac{te^t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.$$

• B_n shows up in number theory:

$$E_{2k}(q) = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

• B_n shows up in algebraic topology: $|\pi_{4k-1}(J)|$ is equal to the numerator of $4k/B_{2k}$.

Question

Is this a coincidence?

Answer

This is not a coincidence.

Answer

Background

00000

This is not a coincidence.

• Katz used a Riemann-Hilbert type correspondence to prove

$$E_k \equiv 1 \mod p^m \iff \mathbb{Z}_p^\times \text{ acts trivially on } (\mathbb{Z}_p)^{\otimes k} \mod p^m.$$

Answer

This is not a coincidence.

• Katz used a Riemann-Hilbert type correspondence to prove

$$E_k \equiv 1 \mod p^m \iff \mathbb{Z}_p^\times \text{ acts trivially on } (\mathbb{Z}_p)^{\otimes k} \mod p^m.$$

 $② \ (M/p^{\infty})^{\mathbb{Z}_p^{\times}} \ \text{measures congruences of a } \mathbb{Z}_p^{\times}\text{-representation } M.$

Answer

This is not a coincidence.

• Katz used a Riemann-Hilbert type correspondence to prove

$$E_k \equiv 1 \mod p^m \iff \mathbb{Z}_p^\times \text{ acts trivially on } (\mathbb{Z}_p)^{\otimes k} \mod p^m.$$

- $② \ (M/p^{\infty})^{\mathbb{Z}_p^{\times}} \ \text{measures congruences of a} \ \mathbb{Z}_p^{\times}\text{-representation} \ M.$
- **3** Chromatic resolution shows $(M/p^{\infty})^{\mathbb{Z}_p^{\times}} \simeq H_c^1(\mathbb{Z}_p^{\times}; M)$.

Answer

This is not a coincidence.

• Katz used a Riemann-Hilbert type correspondence to prove

$$E_k \equiv 1 \mod p^m \iff \mathbb{Z}_p^\times \text{ acts trivially on } (\mathbb{Z}_p)^{\otimes k} \mod p^m.$$

- $(M/p^{\infty})^{\mathbb{Z}_p^{\times}}$ measures congruences of a \mathbb{Z}_p^{\times} -representation M.
- **3** Chromatic resolution shows $(M/p^{\infty})^{\mathbb{Z}_p^{\times}} \simeq H_c^1(\mathbb{Z}_p^{\times}; M)$.
- There is a spectral sequence

$$E_2^{s,t} = H_c^s(\mathbb{Z}_p^{\times}; \pi_t(K_p^{\wedge})) \Longrightarrow \pi_{t-s}\left(S_{K(1)}^0\right).$$

Answer

This is not a coincidence.

• Katz used a Riemann-Hilbert type correspondence to prove

$$E_k \equiv 1 \mod p^m \iff \mathbb{Z}_p^\times \text{ acts trivially on } (\mathbb{Z}_p)^{\otimes k} \mod p^m.$$

- $(M/p^{\infty})^{\mathbb{Z}_p^{\times}}$ measures congruences of a \mathbb{Z}_p^{\times} -representation M.
- **3** Chromatic resolution shows $(M/p^{\infty})^{\mathbb{Z}_p^{\times}} \simeq H_c^1(\mathbb{Z}_p^{\times}; M)$.
- There is a spectral sequence

$$E_2^{s,t} = H_c^s(\mathbb{Z}_p^{\times}; \pi_t(K_p^{\wedge})) \Longrightarrow \pi_{t-s}\left(S_{K(1)}^0\right).$$

1 The image of J completed at each prime is $S_{K(1)}^0$.

Let $\chi:(\mathbb{Z}/N)^{\times}\to\mathbb{C}^{\times}$ be a primitive Dirichlet character.

Let $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$ be a primitive Dirichlet character.

Definitions

The generalized Bernoulli numbers $B_{n,\chi}$ associated to χ are defined by:

$$F_{\chi}(t) = \sum_{a=1}^{N} \frac{\chi(a)te^{at}}{e^{Nt} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}.$$

Let $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$ be a primitive Dirichlet character.

Definitions

The generalized Bernoulli numbers $B_{n,\chi}$ associated to χ are defined by:

$$F_{\chi}(t) = \sum_{a=1}^{N} \frac{\chi(a)te^{at}}{e^{Nt} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}.$$

The Eisenstein series associated to χ is defined by:

$$G_k(z;\chi) \coloneqq \sum_{(m,n)\neq(0,0)} \frac{\chi(n)}{(mNz+n)^k},$$

Let $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$ be a primitive Dirichlet character.

Definitions

The generalized Bernoulli numbers $B_{n,\chi}$ associated to χ are defined by:

$$F_{\chi}(t) = \sum_{a=1}^{N} \frac{\chi(a)te^{at}}{e^{Nt} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}.$$

The Eisenstein series associated to χ is defined by:

$$G_k(z;\chi) := \sum_{(m,n)\neq(0,0)} \frac{\chi(n)}{(mNz+n)^k},$$

with the q-expansion of its normalization given by:

$$E_k(q;\chi) = 1 - \frac{2k}{B_{k,\chi^{-1}}} \sum_{n=1}^{\infty} \sigma_{k-1,\chi^{-1}}(n) q^n.$$

Proposition

 $E_{k,\chi}$ is a modular form of weight k and level $\Gamma_1(N)$.

Proposition

 $E_{k,\chi}$ is a modular form of weight k and level $\Gamma_1(N)$. Furthermore,

$$E_k(\gamma \cdot z; \chi) = \chi(a)(cz + d)^k E_k(z; \chi), \quad \text{for } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N).$$

Proposition

 $E_{k,\gamma}$ is a modular form of weight k and level $\Gamma_1(N)$. Furthermore,

$$E_k(\gamma \cdot z; \chi) = \chi(a)(cz + d)^k E_k(z; \chi), \quad \text{for } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N).$$

Proposition

The automorphic equation above is equivalent to

$$E_{k,\chi} \in \operatorname{Hom}_{(\mathbb{Z}/N)^{\times}\text{-rep}}(\mathbb{C}_{\chi}, H^0(\mathcal{M}_{ell}(\Gamma_1(N)), \omega^k))$$
.

Twisted J-spectra

Let $\mathcal{M}_{mult}(N)$ be the moduli stack over \mathbb{Z} of formal groups of height 1 at all primes with μ_N -level structure, that is

$$(\mathcal{M}_{mult}(N))(R) \coloneqq \{(\widehat{G}/R, \eta : \mu_N \xrightarrow{\sim} \widehat{G}[N])\}.$$

Let $\mathcal{M}_{mult}(N)$ be the moduli stack over \mathbb{Z} of formal groups of height 1 at all primes with μ_N -level structure, that is

$$(\mathcal{M}_{mult}(N))(R) := \{(\widehat{G}/R, \eta : \mu_N \xrightarrow{\sim} \widehat{G}[N])\}.$$

We can construct a sheaf of \mathcal{E}_{∞} -ring spectra \mathcal{O}^{top} over \mathcal{M}_{mult} , whose global section is K-local sphere.

Let $\mathcal{M}_{mult}(N)$ be the moduli stack over \mathbb{Z} of formal groups of height 1 at all primes with μ_N -level structure, that is

$$(\mathcal{M}_{mult}(N))(R) \coloneqq \{(\widehat{G}/R, \eta : \mu_N \xrightarrow{\sim} \widehat{G}[N])\}.$$

We can construct a sheaf of \mathcal{E}_{∞} -ring spectra \mathcal{O}^{top} over \mathcal{M}_{mult} , whose global section is K-local sphere. From the local structures of μ_N , we can define

Let $\mathcal{M}_{mult}(N)$ be the moduli stack over \mathbb{Z} of formal groups of height 1 at all primes with μ_N -level structure, that is

$$(\mathcal{M}_{mult}(N))(R) := \{(\widehat{G}/R, \eta : \mu_N \xrightarrow{\sim} \widehat{G}[N])\}.$$

We can construct a sheaf of \mathcal{E}_{∞} -ring spectra \mathcal{O}^{top} over \mathcal{M}_{mult} , whose global section is K-local sphere. From the local structures of μ_N , we can define

$$J\coloneqq S_K^0 \longrightarrow \prod_p S_{K/p}^0$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{\mathbb{Q}}^0 \longrightarrow \left(\prod_p S_{K/p}^0\right)_{\mathbb{Q}}$$

Let $\mathcal{M}_{mult}(N)$ be the moduli stack over \mathbb{Z} of formal groups of height 1 at all primes with μ_N -level structure, that is

$$(\mathcal{M}_{mult}(N))(R) := \{(\widehat{G}/R, \eta : \mu_N \xrightarrow{\sim} \widehat{G}[N])\}.$$

We can construct a sheaf of \mathcal{E}_{∞} -ring spectra \mathcal{O}^{top} over \mathcal{M}_{mult} , whose global section is K-local sphere. From the local structures of μ_N , we can define

$$J := S_K^0 \longrightarrow \prod_p S_{K/p}^0 \qquad J(N) \longrightarrow \prod_p S_{K/p}^0 \left(p^{v_p(N)} \right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S_{\mathbb{Q}}^0 \longrightarrow \left(\prod_p S_{K/p}^0 \right)_{\mathbb{Q}} \qquad S_{\mathbb{Q}}^0 \longrightarrow \left(\prod_p S_{K/p}^0 \left(p^{v_p(N)} \right) \right)_{\mathbb{Q}}$$

Here
$$S^0_{K/p}(p^v)\coloneqq \left(K_p^{\wedge}\right)^{h(1+p^v\mathbb{Z}_p)}$$
.

Let χ be a Dirichlet character of conductor N

Let χ be a Dirichlet character of conductor N and $\mathbb{Z}[\chi]$ be the \mathbb{Z} -subalgebra of \mathbb{C} generated by the image of χ . The Dirichlet character χ realizes $\mathbb{Z}[\chi]$ as a $(\mathbb{Z}/N)^{\times}$ -representation in finite free \mathbb{Z} -modules.

Let χ be a Dirichlet character of conductor N and $\mathbb{Z}[\chi]$ be the \mathbb{Z} -subalgebra of \mathbb{C} generated by the image of χ . The Dirichlet character χ realizes $\mathbb{Z}[\chi]$ as a $(\mathbb{Z}/N)^{\times}$ -representation in finite free \mathbb{Z} -modules.

Example

When N=7 and $\chi: (\mathbb{Z}/7)^{\times} \to \mathbb{C}^{\times}$ sending a generator $3 \in (\mathbb{Z}/7)^{\times}$ to $\zeta_6 \in \mathbb{C}^{\times}$. Then $\mathbb{Z}[\chi] \simeq \mathbb{Z}[\zeta_6]$ since $(\mathbb{Z}/7)^{\times} \simeq \mathbb{Z}/6$. This is a free \mathbb{Z} -module of rank 2 with basis $\{1,\zeta_6\}$.

Let χ be a Dirichlet character of conductor N and $\mathbb{Z}[\chi]$ be the \mathbb{Z} -subalgebra of \mathbb{C} generated by the image of χ . The Dirichlet character χ realizes $\mathbb{Z}[\chi]$ as a $(\mathbb{Z}/N)^{\times}$ -representation in finite free \mathbb{Z} -modules.

Example

When N=7 and $\chi:(\mathbb{Z}/7)^{\times}\to\mathbb{C}^{\times}$ sending a generator $3\in(\mathbb{Z}/7)^{\times}$ to $\zeta_{6}\in\mathbb{C}^{\times}$. Then $\mathbb{Z}[\chi]\simeq\mathbb{Z}[\zeta_{6}]$ since $(\mathbb{Z}/7)^{\times}\simeq\mathbb{Z}/6$. This is a free \mathbb{Z} -module of rank 2 with basis $\{1,\zeta_{6}\}$. The minimal polynomial of ζ_{6} is $\Phi_{6}(x)=x^{2}-x+1$, from which we deduce the matrix representation of $\chi(3)$ with respect the basis $\{1,\zeta_{6}\}$ of $\mathbb{Z}[\chi]$ is:

$$\chi(3) = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}.$$

Replacing a homotopy action with a topological one

Warning

The action of $(\mathbb{Z}/N)^{\times}$ on $\mathbb{Z}[\chi]$ induced by χ lifts to a homotopy action on the Moore spectrum $M(\mathbb{Z}[\chi])$.

Warning

The action of $(\mathbb{Z}/N)^{\times}$ on $\mathbb{Z}[\chi]$ induced by χ lifts to a homotopy action on the Moore spectrum $M(\mathbb{Z}[\chi])$. It DOES NOT rigidify to a topological action in general, e.g. the previous example.

Warning

The action of $(\mathbb{Z}/N)^{\times}$ on $\mathbb{Z}[\chi]$ induced by χ lifts to a homotopy action on the Moore spectrum $M(\mathbb{Z}[\chi])$. It DOES NOT rigidify to a topological action in general, e.g. the previous example.

One solution

 $\mathbb{Z}[\chi] = \mathbb{Z}[\zeta_n]$ for some n. By an obstruction theory of Cooke, the homotopy action of $(\mathbb{Z}/N)^{\times}$ on $M(\mathbb{Z}[1/n,\zeta_n])$ induced by χ is equivalent to a topological action.

Warning

The action of $(\mathbb{Z}/N)^{\times}$ on $\mathbb{Z}[\chi]$ induced by χ lifts to a homotopy action on the Moore spectrum $M(\mathbb{Z}[\chi])$. It DOES NOT rigidify to a topological action in general, e.g. the previous example.

One solution

 $\mathbb{Z}[\chi] = \mathbb{Z}[\zeta_n]$ for some n. By an obstruction theory of Cooke, the homotopy action of $(\mathbb{Z}/N)^{\times}$ on $M(\mathbb{Z}[1/n,\zeta_n])$ induced by χ is equivalent to a topological action.

Some good cases

When $\mathbb{Z}[\chi] = \mathbb{Z}[\zeta_{2^n}]$, the homotopy action on $M(\mathbb{Z}[\chi])$ induced by χ is equivalent to a topological one, e.g. when $N = 2^l \cdot p$ with $p = 2^{2^m} + 1$ for $0 \le m \le 4$ being a Fermat prime.

Motivated by the Dirichlet equivariance of twisted Eisenstein series, we construct the χ -twisted J-spectrum by

Motivated by the Dirichlet equivariance of twisted Eisenstein series, we construct the χ -twisted J-spectrum by

Construction

Let $\mathbb{Z}[\chi] = \mathbb{Z}[\zeta_n]$, define

$$J(N)^{h\chi} := (J(N) \wedge M(\mathbb{Z}[1/n, \chi^{-1}]))^{h(\mathbb{Z}/N)^{\times}}.$$

Here, $(\mathbb{Z}/N)^{\times}$ acts on the wedge product diagonally.

Motivated by the Dirichlet equivariance of twisted Eisenstein series, we construct the χ -twisted J-spectrum by

Construction

Let $\mathbb{Z}[\chi] = \mathbb{Z}[\zeta_n]$, define

$$J(N)^{h\chi} := (J(N) \wedge M(\mathbb{Z}[1/n, \chi^{-1}]))^{h(\mathbb{Z}/N)^{\times}}.$$

Here, $(\mathbb{Z}/N)^{\times}$ acts on the wedge product diagonally.

Remark

 $(-)^{h\chi}$ means the homotopy χ -eigen-spectrum.

Proposition

Let $\chi: (\mathbb{Z}/p)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor p > 2.

Proposition

Let $\chi: (\mathbb{Z}/p)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor p > 2. The p-completion of the χ -twisted J-spectrum decomposes as:

$$(J(p)^{h\chi})_p^{\wedge} \simeq \bigvee_{\substack{0 \le a \le p-2 \\ \ker \omega^a = \ker \chi}} (S_{K(1)}^0(p))^{h\omega^a},$$

where $\omega: (\mathbb{Z}/p)^{\times} \to \mathbb{Z}_p^{\times}$ is the Teichmüller character.

Proposition

Let $\chi: (\mathbb{Z}/p)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor p > 2. The p-completion of the χ -twisted J-spectrum decomposes as:

$$(J(p)^{h\chi})_p^{\wedge} \simeq \bigvee_{\substack{0 \le a \le p-2 \\ \ker \omega^a = \ker \chi}} (S_{K(1)}^0(p))^{h\omega^a},$$

where $\omega: (\mathbb{Z}/p)^{\times} \to \mathbb{Z}_p^{\times}$ is the Teichmüller character.

Remark

$$\left(S_{K(1)}^0(p)\right)^{h\omega^a} \in \operatorname{Pic}_{K(1)}^{alg} \simeq \operatorname{End}(\mathbb{Z}_p^{\times})$$
 corresponds to

$$\mathbb{Z}_p^{\times} \longrightarrow (\mathbb{Z}/p)^{\times} \xrightarrow{\omega^{-a}} \mathbb{Z}_p^{\times}.$$

The homotopy eigen spectral sequence

The homotopy eigen spectral sequence

Proposition

The E_2 -page of the HFPSS to compute $\pi_*\left(J(N)^{h\chi}\right)$ can be identified with

$$E_2^{s,t} \simeq \operatorname{Ext}_{\mathbb{Z}[(\mathbb{Z}/N)^{\times}]}^s (\mathbb{Z}[1/n,\chi], \pi_t(J(N))) \Longrightarrow \pi_{t-s} (J(N)^{h\chi}),$$

where $(\mathbb{Z}/N)^{\times}$ acts on $\mathbb{Z}[1/n,\chi]$ by χ .

Proposition

The E_2 -page of the HFPSS to compute $\pi_*\left(J(N)^{h\chi}\right)$ can be identified with

$$E_2^{s,t} \simeq \operatorname{Ext}_{\mathbb{Z}[(\mathbb{Z}/N)^{\times}]}^{s} (\mathbb{Z}[1/n,\chi], \pi_t(J(N))) \Longrightarrow \pi_{t-s} (J(N)^{h\chi}),$$

where $(\mathbb{Z}/N)^{\times}$ acts on $\mathbb{Z}[1/n,\chi]$ by χ . For p-adic Dirichlet characters, when N=p, we further have $\mathbb{Z}_p[\chi]=\mathbb{Z}_p$ and

$$E_2^{s,t} \simeq \operatorname{Ext}_{\mathbb{Z}_p[\![\mathbb{Z}_p^{\times}]\!]}^{s} \left(\mathbb{Z}_p, \pi_t \left(K_p^{\wedge} \right) \right) \Longrightarrow \pi_{t-s} \left(\left(S_{K(1)}^{0}(p) \right)^{h\chi} \right),$$

where \mathbb{Z}_p^{\times} acts on \mathbb{Z}_p by $\mathbb{Z}_p^{\times} \twoheadrightarrow (\mathbb{Z}/p)^{\times} \xrightarrow{\chi} \mathbb{Z}_p^{\times}$.

Relations with twisted Eisenstein series

Let p > 2 and $\chi : (\mathbb{Z}/p)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor p. $B_{k,\chi} \in \mathbb{Q}[\chi]$ is an algebraic number.

Let p > 2 and $\chi : (\mathbb{Z}/p)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor p. $B_{k,\chi} \in \mathbb{Q}[\chi]$ is an algebraic number. Using SageMath, one can check that when $(-1)^k = \chi(-1)$,

$$v_p\left(\operatorname{Norm}\left(\frac{2k}{B_{k,\chi^{-1}}}\right)\right) = \begin{cases} v_p(k) + 1, & \text{if } \ker \omega^k = \ker \chi; \\ 0, & \text{else.} \end{cases}$$

Let p > 2 and $\chi : (\mathbb{Z}/p)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor p. $B_{k,\chi} \in \mathbb{Q}[\chi]$ is an algebraic number. Using SageMath, one can check that when $(-1)^k = \chi(-1)$,

$$v_p\left(\operatorname{Norm}\left(\frac{2k}{B_{k,\chi^{-1}}}\right)\right) = \begin{cases} v_p(k) + 1, & \text{if } \ker \omega^k = \ker \chi; \\ 0, & \text{else.} \end{cases}$$

The HFPSS computation shows

$$\pi_{2k-1}\left(\left(J(p)^{h\chi}\right)_p^{\wedge}\right) = \left\{ \begin{array}{c} \mathbb{Z}/p^{v_p(k)+1}, & \text{if } \ker \omega^k = \ker \chi; \\ 0, & \text{else.} \end{array} \right.$$

Let p > 2 and $\chi : (\mathbb{Z}/p)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor p. $B_{k,\chi} \in \mathbb{Q}[\chi]$ is an algebraic number. Using SageMath, one can check that when $(-1)^k = \chi(-1)$,

$$v_p\left(\operatorname{Norm}\left(\frac{2k}{B_{k,\chi^{-1}}}\right)\right) = \begin{cases} v_p(k) + 1, & \text{if } \ker \omega^k = \ker \chi; \\ 0, & \text{else.} \end{cases}$$

The HFPSS computation shows

$$\pi_{2k-1}\left(\left(J(p)^{h\chi}\right)_p^{\wedge}\right) = \left\{ \begin{array}{cc} \mathbb{Z}/p^{v_p(k)+1}, & \text{if } \ker \omega^k = \ker \chi; \\ 0, & \text{else.} \end{array} \right.$$

When χ is trivial, $\ker \omega^k = \ker \chi = (\mathbb{Z}/p)^{\times}$ iff $(p-1) \mid k$ and we recover the classical numeric coincidence.

Let p > 2 and $\chi : (\mathbb{Z}/p)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor p. $B_{k,\chi} \in \mathbb{Q}[\chi]$ is an algebraic number. Using SageMath, one can check that when $(-1)^k = \chi(-1)$,

$$v_p\left(\operatorname{Norm}\left(\frac{2k}{B_{k,\chi^{-1}}}\right)\right) = \begin{cases} v_p(k) + 1, & \text{if } \ker \omega^k = \ker \chi; \\ 0, & \text{else.} \end{cases}$$

The HFPSS computation shows

$$\pi_{2k-1}\left(\left(J(p)^{h\chi}\right)_p^{\wedge}\right) = \left\{ \begin{array}{cc} \mathbb{Z}/p^{v_p(k)+1}, & \text{if } \ker \omega^k = \ker \chi; \\ 0, & \text{else.} \end{array} \right.$$

When χ is trivial, $\ker \omega^k = \ker \chi = (\mathbb{Z}/p)^{\times}$ iff $(p-1) \mid k$ and we recover the classical numeric coincidence. We will explain this coincidence via congruences of twisted Eisenstein series $E_{k,\chi}$.

Strategy

Strategy

Fix a Dirichlet character $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}_p^{\times}$ with $v_p(N) = v$.

① Consider the stack \mathcal{M}_{ell}^{ord} and the $(\mu_N)_p^{\wedge} \simeq \mu_{p^v}$ -level structures:

$$\mathcal{M}_{ell}^{ord}(p^v) \to B(1 + p^v \mathbb{Z}_p)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}_{ell}^{ord} \longrightarrow B\mathbb{Z}_p^{\times}$$

Fix a Dirichlet character $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}_{p}^{\times}$ with $v_{p}(N) = v$.

• Consider the stack \mathcal{M}_{ell}^{ord} and the $(\mu_N)_n^{\wedge} \simeq \mu_{n^v}$ -level structures:

$$\mathcal{M}_{ell}^{ord}(p^v) \to B(1 + p^v \mathbb{Z}_p)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}_{ell}^{ord} \longrightarrow B\mathbb{Z}_p^{\times}$$

Study the congruence of $E_{k,\chi} \in \operatorname{Hom}_{\mathbb{Z}_p[(\mathbb{Z}/N)^{\times}]} (\mathbb{Z}_p[\chi], H^0(\mathcal{M}_{ell}^{ord}(p^v), \omega^{\otimes k})).$

Strategy

Background

Fix a Dirichlet character $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}_{n}^{\times}$ with $v_{p}(N) = v$.

• Consider the stack \mathcal{M}_{ell}^{ord} and the $(\mu_N)_n^{\wedge} \simeq \mu_{p^v}$ -level structures:

$$\mathcal{M}_{ell}^{ord}(p^v) \to B(1 + p^v \mathbb{Z}_p)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}_{ell}^{ord} \longrightarrow B\mathbb{Z}_p^{\times}$$

Study the congruence of

$$E_{k,\chi} \in \operatorname{Hom}_{\mathbb{Z}_p[(\mathbb{Z}/N)^{\times}]} (\mathbb{Z}_p[\chi], H^0(\mathcal{M}_{ell}^{ord}(p^v), \boldsymbol{\omega}^{\otimes k})).$$

Reformulate a Riemann-Hilbert correspondence to show

$$E_{k,\chi} \equiv 1 \mod I \le \mathbb{Z}_p[\chi] \iff \mathbb{Z}_p^{\otimes k}[\chi^{-1}] \text{ is a trivial } \mathbb{Z}_p^{\times}\text{-rep mod } I.$$

Strategy

Fix a Dirichlet character $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}_p^{\times}$ with $v_p(N) = v$.

① Consider the stack \mathcal{M}_{ell}^{ord} and the $(\mu_N)_p^{\wedge} \simeq \mu_{p^v}$ -level structures:

$$\mathcal{M}_{ell}^{ord}(p^v) \to B(1 + p^v \mathbb{Z}_p)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}_{ell}^{ord} \longrightarrow B\mathbb{Z}_p^{\times}$$

Study the congruence of $E_{k,\chi} \in \operatorname{Hom}_{\mathbb{Z}_p[(\mathbb{Z}/N)^{\times}]}(\mathbb{Z}_p[\chi], H^0(\mathcal{M}_{ell}^{ord}(p^v), \boldsymbol{\omega}^{\otimes k})).$

- Reformulate a Riemann-Hilbert correspondence to show
 The state of the
 - $E_{k,\chi} \equiv 1 \mod I \le \mathbb{Z}_p[\chi] \iff \mathbb{Z}_p^{\otimes k}[\chi^{-1}] \text{ is a trivial } \mathbb{Z}_p^{\times}\text{-rep mod } I.$
- **3** For $M = \mathbb{Z}_p^{\otimes k}[\chi^{-1}]$, use chromatic resolution to show

$$\operatorname{colim}_m \left((M/p^m)^{\mathbb{Z}_p^{\times}} \right) \simeq \left(\operatorname{colim}_m (M/p^m) \right)^{\mathbb{Z}_p^{\times}} \simeq H_c^1(\mathbb{Z}_p^{\times}; M).$$

Congruence and group cohomology

Proposition

Let M be a \mathbb{Z}_p^{\times} -representation in finite free \mathbb{Z}_p -modules with no non-zero fixed points, then $H_c^1(\mathbb{Z}_p^{\times};M) \simeq \operatorname{colim}_m ((M/p^m)^{\mathbb{Z}_p^{\times}}).$

Congruence and group cohomology

Proposition

Background

Let M be a \mathbb{Z}_{p}^{\times} -representation in finite free \mathbb{Z}_{p} -modules with no non-zero fixed points, then $H_c^1(\mathbb{Z}_p^{\times}; M) \simeq \operatorname{colim}_m ((M/p^m)^{\mathbb{Z}_p^{\times}}).$

Proof.

Apply $H_c^*(\mathbb{Z}_p^{\times}; -)$ to the short exact sequence:

$$0 \longrightarrow M \longrightarrow p^{-1}M \longrightarrow M/p^{\infty} \longrightarrow 0,$$

we get an isomorphism $(M/p^{\infty})^{\mathbb{Z}_p^{\times}} \simeq H_c^1(\mathbb{Z}_n^{\times}; M)$.

Congruence and group cohomology

Proposition

Let M be a \mathbb{Z}_p^{\times} -representation in finite free \mathbb{Z}_p -modules with no non-zero fixed points, then $H^1_c(\mathbb{Z}_p^{\times};M) \simeq \operatorname{colim}_m \left((M/p^m)^{\mathbb{Z}_p^{\times}} \right)$.

Proof.

Apply $H_c^*(\mathbb{Z}_p^*; -)$ to the short exact sequence:

$$0 \longrightarrow M \longrightarrow p^{-1}M \longrightarrow M/p^{\infty} \longrightarrow 0,$$

we get an isomorphism $(M/p^{\infty})^{\mathbb{Z}_p^{\times}} \simeq H^1_c(\mathbb{Z}_p^{\times};M)$. The claim now follows from the isomorphism

$$\operatorname{colim}_{m}\left((M/p^{m})^{\mathbb{Z}_{p}^{\times}}\right) \stackrel{\sim}{\longrightarrow} \left(\operatorname{colim}_{m} M/p^{m}\right)^{\mathbb{Z}_{p}^{\times}} \simeq (M/p^{\infty})^{\mathbb{Z}_{p}^{\times}}.$$

A Riemann-Hilbert correspondence

A Riemann-Hilbert correspondence

Let κ be a perfect field of characteristic p. Let A be a flat $\mathbb{W}(\kappa)$ -algebra such that A/p is an integrally closed domain over κ and that A admits an endomorphism $\varphi:A\to A$ that lifts the Frobenius φ_0 on A/p (the p-th power map).

A Riemann-Hilbert correspondence

Let κ be a perfect field of characteristic p. Let A be a flat $\mathbb{W}(\kappa)$ -algebra such that A/p is an integrally closed domain over κ and that A admits an endomorphism $\varphi:A\to A$ that lifts the Frobenius φ_0 on A/p (the p-th power map). Then we have:

Theorem

The following categories are equivalent:

$$\left\{ \begin{array}{c} \textit{Projective A-modules M of} \\ \textit{rank r with $F:\varphi^*M \xrightarrow{\sim} M$} \end{array} \right\} \underbrace{\begin{array}{c} \quad \quad \\ \quad \quad \\$$

Congruences in the RH correspondence

Congruences in the RH correspondence

Proposition

Let \widehat{G} be a one-dimensional formal group of height 1 over A. Denote the Dieudonné module associated to \widehat{G} by $(M,F:\varphi^*M\overset{\sim}{\longrightarrow} M)$ and the Galois descent data by $\rho\in H^1(\pi_1^{\acute{e}t}(A);\mathbb{Z}_p^{\times}).$

Congruences in the RH correspondence

Proposition

Let \widehat{G} be a one-dimensional formal group of height 1 over A. Denote the Dieudonné module associated to \widehat{G} by $(M,F:\varphi^*M\overset{\sim}{\longrightarrow}M)$ and the Galois descent data by $\rho\in H^1(\pi_1^{\acute{e}t}(A);\mathbb{Z}_p^\times)$. Then the followings are equivalent:

- **2** There is a generator $\gamma \in M$ such that $F\gamma \equiv \gamma \mod p^m$.
- **3** ρ is trivial mod p^m , i.e. the image of $\rho: \pi_1^{\acute{e}t}(A) \to \mathbb{Z}_p^{\times}$ is contained in $1 + p^m \mathbb{Z}_p \subseteq \mathbb{Z}_p^{\times}$.

Congruences in the RH correspondence

Proposition

Let \widehat{G} be a one-dimensional formal group of height 1 over A. Denote the Dieudonné module associated to \widehat{G} by $(M,F:\varphi^*M\overset{\sim}{\longrightarrow}M)$ and the Galois descent data by $\rho\in H^1(\pi_1^{\acute{e}t}(A);\mathbb{Z}_p^\times)$. Then the followings are equivalent:

- **2** There is a generator $\gamma \in M$ such that $F\gamma \equiv \gamma \mod p^m$.
- **3** ρ is trivial mod p^m , i.e. the image of $\rho: \pi_1^{\acute{e}t}(A) \to \mathbb{Z}_p^{\times}$ is contained in $1 + p^m \mathbb{Z}_p \subseteq \mathbb{Z}_p^{\times}$.

In particular, when $m = \infty$, the followings are equivalent:

- 2 There is a generator $\gamma \in M$ such that $F\gamma = \gamma$.
- \circ ρ is the trivial representation.

Dirichlet equivariance and Galois descent

Dirichlet equivariance and Galois descent

Construction

As the invertible sheaf $\boldsymbol{\omega}^{\otimes k}$ over $\mathcal{M}^{ord}_{ell}(p^v)$ is the pullback of the invertible sheaf $\boldsymbol{\omega}^{\otimes k}$ over \mathcal{M}^{ord}_{ell} , there is a canonical isomorphism

$$f_{\sigma}: \boldsymbol{\omega}^{\otimes k} \xrightarrow{\sim} \sigma^* \boldsymbol{\omega}^{\otimes k}, \quad \sigma \in \operatorname{Aut}_{\mathcal{M}_{ell}^{ord}}(\mathcal{M}_{ell}^{ord}(p^v)) \simeq (\mathbb{Z}/p^v)^{\times},$$

where
$$(f_{\sigma}) = 1 \in H^1((\mathbb{Z}/p^v)^{\times}; \mathbb{Z}_p^{\times}).$$

Dirichlet equivariance and Galois descent

Construction

As the invertible sheaf $\omega^{\otimes k}$ over $\mathcal{M}^{ord}_{ell}(p^v)$ is the pullback of the invertible sheaf $\omega^{\otimes k}$ over \mathcal{M}^{ord}_{ell} , there is a canonical isomorphism

$$f_{\sigma}: \boldsymbol{\omega}^{\otimes k} \stackrel{\sim}{\longrightarrow} \sigma^* \boldsymbol{\omega}^{\otimes k}, \quad \sigma \in \operatorname{Aut}_{\mathcal{M}_{ell}^{ord}}(\mathcal{M}_{ell}^{ord}(p^v)) \simeq (\mathbb{Z}/p^v)^{\times},$$

where $(f_{\sigma}) = 1 \in H^1((\mathbb{Z}/p^v)^{\times}; \mathbb{Z}_p^{\times})$. Then a p-adic Dirichlet character χ of conductor p^v induces a Galois descent data:

$$1 \otimes \chi^{-1}(\sigma) : \boldsymbol{\omega}^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi^{-1}] \xrightarrow{\sim} (\sigma \otimes 1)^* (\boldsymbol{\omega}^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi^{-1}]).$$

Denote the resulting sheaf over \mathcal{M}_{ell}^{ord} by $\mathscr{F}_{k,\chi}$.

Construction

Background

As the invertible sheaf $\omega^{\otimes k}$ over $\mathcal{M}^{ord}_{ell}(p^v)$ is the pullback of the invertible sheaf $\omega^{\otimes k}$ over \mathcal{M}^{ord}_{ell} , there is a canonical isomorphism

$$f_{\sigma}: \boldsymbol{\omega}^{\otimes k} \stackrel{\sim}{\longrightarrow} \sigma^* \boldsymbol{\omega}^{\otimes k}, \quad \sigma \in \operatorname{Aut}_{\mathcal{M}_{ell}^{ord}}(\mathcal{M}_{ell}^{ord}(p^v)) \simeq (\mathbb{Z}/p^v)^{\times},$$

where $(f_{\sigma}) = 1 \in H^1((\mathbb{Z}/p^v)^{\times}; \mathbb{Z}_p^{\times})$. Then a p-adic Dirichlet character χ of conductor p^v induces a Galois descent data:

$$1 \otimes \chi^{-1}(\sigma) : \boldsymbol{\omega}^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi^{-1}] \xrightarrow{\sim} (\sigma \otimes 1)^* (\boldsymbol{\omega}^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi^{-1}]).$$

Denote the resulting sheaf over \mathcal{M}_{ell}^{ord} by $\mathscr{F}_{k,\chi}$.

Lemma

$$\operatorname{Hom}_{\mathbb{Z}_p[(\mathbb{Z}/p^v)^{\times}]} \left(\mathbb{Z}_p[\chi], H^0(\mathcal{M}_{ell}^{ord}(p^v), \boldsymbol{\omega}^{\otimes k}) \right) \simeq H^0(\mathcal{M}_{ell}^{ord}, \mathscr{F}_{k,\chi}).$$

Using descent, we can endow $\mathscr{F}_{k,\chi}$ with an isomorphism

$$F^{k,\chi}: \mathscr{F}_{k,\chi} \stackrel{\circ}{\longrightarrow} \varphi^* \mathscr{F}_{k,\chi}.$$

Using descent, we can endow $\mathscr{F}_{k,\chi}$ with an isomorphism $F^{k,\chi}:\mathscr{F}_{k,\chi}\stackrel{\sim}{\longrightarrow} \varphi^*\mathscr{F}_{k,\chi}.$ Let $\rho_{k,\chi}$ be the $\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord})$ -representation corresponding to $(\mathscr{F}_{k,\chi},F^{k,\chi})$. Notice $\rho_{k,\chi}$ factors as

$$\rho_{k,\chi}: \pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord}) \stackrel{\rho}{\longrightarrow} \mathbb{Z}_p^{\times} \stackrel{(-)^k \cdot \widetilde{\chi}^{-1}}{\longrightarrow} (\mathbb{Z}_p[\chi])^{\times} \hookrightarrow \operatorname{Aut}_{\mathbb{Z}_p}(\mathbb{Z}_p[\chi]),$$

where ρ corresponds to (ω, F) over \mathcal{M}_{ell}^{ord} .

Using descent, we can endow $\mathscr{F}_{k,\chi}$ with an isomorphism $F^{k,\chi}:\mathscr{F}_{k,\chi}\overset{\sim}{\longrightarrow}\varphi^*\mathscr{F}_{k,\chi}.$ Let $\rho_{k,\chi}$ be the $\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord})$ -representation corresponding to $(\mathscr{F}_{k,\chi},F^{k,\chi})$. Notice $\rho_{k,\chi}$ factors as

$$\rho_{k,\chi}: \pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord}) \xrightarrow{\rho} \mathbb{Z}_p^{\times} \xrightarrow{(-)^k \cdot \widehat{\chi}^{-1}} (\mathbb{Z}_p[\chi])^{\times} \hookrightarrow \operatorname{Aut}_{\mathbb{Z}_p}(\mathbb{Z}_p[\chi]),$$

where ρ corresponds to (ω, F) over \mathcal{M}^{ord}_{ell} . Further, we have

Theorem (Igusa)

$$\rho:\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord}) o \mathbb{Z}_p^{ imes}$$
 is surjective.

Using descent, we can endow $\mathscr{F}_{k,\gamma}$ with an isomorphism $F^{k,\chi}: \mathscr{F}_{k,\chi} \xrightarrow{\sim} \varphi^* \mathscr{F}_{k,\chi}$. Let $\rho_{k,\chi}$ be the $\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord})$ -representation corresponding to $(\mathscr{F}_{k,\chi},F^{k,\chi})$. Notice $\rho_{k,\chi}$ factors as

$$\rho_{k,\chi}: \pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord}) \xrightarrow{\rho} \mathbb{Z}_p^{\times} \xrightarrow{(-)^k \cdot \widehat{\chi}^{-1}} (\mathbb{Z}_p[\chi])^{\times} \hookrightarrow \operatorname{Aut}_{\mathbb{Z}_p}(\mathbb{Z}_p[\chi]),$$

where ρ corresponds to (ω, F) over \mathcal{M}_{cll}^{ord} . Further, we have

Theorem (Igusa)

$$\rho:\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord}) o \mathbb{Z}_p^{\times}$$
 is surjective.

Proposition

 $E_{k,\chi} \equiv 1 \mod I \leq \mathbb{Z}_p[\chi]$ iff the \mathbb{Z}_p^{\times} -representation $\mathbb{Z}_p^{\otimes k} \otimes \mathbb{Z}_p[\chi^{-1}]$ is trivial mod I.

Theorem

Theorem

Let $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}_p^{\times}$ be a p-adic Dirichlet character. The followings are equivalent:

 $\bullet E_{k,\chi} \equiv 1 \mod I \leq \mathbb{Z}_p[\chi].$

Theorem

- $\bullet E_{k,\chi} \equiv 1 \mod I \leq \mathbb{Z}_p[\chi].$
- ② Over $\mathcal{M}^{ord}_{ell}(p^v)$, there is $\gamma \in \boldsymbol{\omega}^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]$ such that:
 - The γ generates the module $\omega^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]/I$ over $\mathcal{M}^{ord}_{ell}(p^v) \times_{\operatorname{Spf} \mathbb{Z}_p} \operatorname{Spf} \mathbb{Z}_p[\chi];$
 - For any $g \in (\mathbb{Z}/p^v)^{\times}$, $g \cdot \gamma = \chi(g)\gamma$;
 - $(F \otimes 1)(\gamma) \equiv \gamma \mod I$.

Theorem

- $\bullet E_{k,\chi} \equiv 1 \mod I \le \mathbb{Z}_p[\chi].$
- ② Over $\mathcal{M}^{ord}_{ell}(p^v)$, there is $\gamma \in \omega^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]$ such that:
 - The γ generates the module $\omega^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]/I$ over $\mathcal{M}^{ord}_{ell}(p^v) \times_{\operatorname{Spf} \mathbb{Z}_p} \operatorname{Spf} \mathbb{Z}_p[\chi];$
 - For any $g \in (\mathbb{Z}/p^v)^{\times}$, $g \cdot \gamma = \chi(g)\gamma$;
 - $(F \otimes 1)(\gamma) \equiv \gamma \mod I$.
- **3** The induced $\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord})$ -action on $\mathbb{Z}_p[\chi]$ is trivial mod I.

$\mathsf{Theorem}$

- $\bullet E_{k,\gamma} \equiv 1 \mod I \leq \mathbb{Z}_p[\chi].$
- Over $\mathcal{M}^{ord}_{sll}(p^v)$, there is $\gamma \in \omega^{\otimes k} \otimes_{\mathbb{Z}_n} \mathbb{Z}_p[\chi]$ such that:
 - The γ generates the module $\omega^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]/I$ over $\mathcal{M}^{ord}_{ell}(p^v) \times_{\operatorname{Spf} \mathbb{Z}_p} \operatorname{Spf} \mathbb{Z}_p[\chi];$
 - For any $q \in (\mathbb{Z}/p^v)^{\times}$, $q \cdot \gamma = \chi(q)\gamma$:
 - $(F \otimes 1)(\gamma) \equiv \gamma \mod I$.
- **3** The induced $\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord})$ -action on $\mathbb{Z}_p[\chi]$ is trivial mod I.
- The \mathbb{Z}_n^{\times} -representation $\mathbb{Z}_n^{\otimes k}[\chi^{-1}]$ is trivial mod I.

Theorem

- $\bullet E_{k,\chi} \equiv 1 \mod I \leq \mathbb{Z}_p[\chi].$
- ② Over $\mathcal{M}^{ord}_{ell}(p^v)$, there is $\gamma \in \omega^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]$ such that:
 - The γ generates the module $\omega^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]/I$ over $\mathcal{M}^{ord}_{ell}(p^v) \times_{\operatorname{Spf} \mathbb{Z}_p} \operatorname{Spf} \mathbb{Z}_p[\chi];$
 - For any $g \in (\mathbb{Z}/p^v)^{\times}$, $g \cdot \gamma = \chi(g)\gamma$;
 - $(F \otimes 1)(\gamma) \equiv \gamma \mod I$.
- **3** The induced $\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord})$ -action on $\mathbb{Z}_p[\chi]$ is trivial mod I.
- $\bullet \ \ \, \textit{The} \, \, \mathbb{Z}_p^{\times} \textit{-representation} \, \, \mathbb{Z}_p^{\otimes k}[\chi^{-1}] \, \, \textit{is trivial mod} \, \, I.$
- **1** There is a surjection $H^1\left(\mathbb{Z}_p^{\times}; \mathbb{Z}_p^{\otimes k}[\chi^{-1}]\right) \twoheadrightarrow \mathbb{Z}_p[\chi]/I$.

Theorem

Let $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}_p^{\times}$ be a p-adic Dirichlet character. The followings are equivalent:

- $\bullet E_{k,\chi} \equiv 1 \mod I \leq \mathbb{Z}_p[\chi].$
- ② Over $\mathcal{M}^{ord}_{ell}(p^v)$, there is $\gamma \in \omega^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]$ such that:
 - The γ generates the module $\omega^{\otimes k} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]/I$ over $\mathcal{M}^{ord}_{ell}(p^v) \times_{\operatorname{Spf} \mathbb{Z}_p} \operatorname{Spf} \mathbb{Z}_p[\chi];$
 - For any $g \in (\mathbb{Z}/p^v)^{\times}$, $g \cdot \gamma = \chi(g)\gamma$;
 - $(F \otimes 1)(\gamma) \equiv \gamma \mod I$.
- **3** The induced $\pi_1^{\acute{e}t}(\mathcal{M}_{ell}^{ord})$ -action on $\mathbb{Z}_p[\chi]$ is trivial mod I.
- The \mathbb{Z}_{p}^{\times} -representation $\mathbb{Z}_{p}^{\otimes k}[\chi^{-1}]$ is trivial mod I.
- **5** There is a surjection $H^1\left(\mathbb{Z}_p^{\times}; \mathbb{Z}_p^{\otimes k}[\chi^{-1}]\right) \twoheadrightarrow \mathbb{Z}_p[\chi]/I$.

Moreover, $E_{k,\chi} \equiv 1 \mod I \le \mathbb{Z}_p[\chi]$ is the maximal congruence iff $H^1(\mathbb{Z}_p^{\times}; \mathbb{Z}_p^{\otimes k}[\chi^{-1}]) \simeq \mathbb{Z}_p[\chi]/I$.

Thanks for your attention!